Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

1 Witam Państwa na wykładzie z MAKROEKONOMII II, :)…

Podobne prezentacje


Prezentacja na temat: "1 Witam Państwa na wykładzie z MAKROEKONOMII II, :)…"— Zapis prezentacji:

1

2 1 Witam Państwa na wykładzie z MAKROEKONOMII II, :)…

3 2 I N W E S T Y C J E

4 3 Jak wiemy, INWESTYCJE mogą być BRUTTO, NETTO I OD- TWORZENIOWE. Pamiętamy również, że poza PRYWATNYMI FIRMA- MI inwestuje PAŃSTWO (inwestycje infrastrukturalne: autostra- dy, porty, uniwersytety itd.; chodzi o ok % prywatnych in- westycji...) i GOSPODARSTWA DOMOWE (inwestycje w kapitał ludzki, np. zakup usług edukacyjnych i zdrowotnych). Jednak dalej zajmować się będziemy jedynie inwestycja- mi prywatnych przedsiębiorstw, czyli literką „I” ze wzoru Y=C+I +G+NX.

5 4 Y = C + I + G + NX Odwrotnie niż w przypadku wydatków gospodarstw domowych na konsumpcję (C) wydatki prywatnych firm na INWESTYCJE, czyli na tworzenie kapitału rzeczowego (maszyny, urządzenia, budynki, budowle, a także zapasy) (I) stanowią MAŁY, LECZ NAJBAR- DZIEJ ZMIENNY SKŁADNIK PKB. Zmiany wielkości inwestycji są JEDNĄ Z NAJWAŻNIEJ- SZYCH PRZYCZYN CYKLU KONIUNKTURALNEGO.

6 5 Inwestycje są bardzo zmienne, ponieważ ZASÓB KAPITAŁU w gospodarce JEST WIELKI (np. na przełomie XX i XXI w. około 2,5  PKB w Stanach), a STRUMIEŃ tworzących ten zasób IN- WESTYCJI – MAŁY (np. około 1/6 PKB w Stanach, czyli 1/15 wartości zasobu kapitału). 1. POPYT NA KAPITAŁ A INWESTYCJE

7 6 Powoduje to, że - np. w Stanach – zmniejszenie się zasobu kapita- łu o 1% rocznie wymagałoby zmniejszenia się strumienia inwes- tycji aż o 15% w ciągu roku. Pomyśl o wielkim pełnym wody zbiorniku z bardzo wąskimi rur- kami dopływu i odpływu, przez które powoli płynie woda. Jeśli ilość wody w tym zbiorniku ma się CHOĆ ODROBINĘ zmienić, skala dopływu lub odpływu musi się zmienić RADYKALNIE.

8 7 W opisanej sytuacji MAŁE ZMIANY ZAPOTRZEBOWANIA NA ZASÓB KAPITAŁU POWODUJĄ DUŻE ZMIANY STRUMIE- NIA INWESTYCJI. W gruncie rzeczy teoria inwestycji jest teorią popytu na kapitał rzeczowy...

9 8 Od czego zależą zmiany zapotrzebowania maksymalizujących zysk prywatnych firm na kapitał, które tak silnie wpływają na wielkość inwestycji? 1.1. POPYT NA KAPITAŁ

10 9 Kluczowe znaczenie ma relacja korzyści ze zwiększenia posiadane- go zasobu kapitału o kolejną (z założenia wartą 1) porcję do kosztu stworzenia i użytkowania tej dodatkowej porcji kapitału. Firma zwiększa zapotrzebowanie na kapitał, aż KRAŃCOWY PRZYCHÓD Z (WARTEJ 1) PORCJI KAPITAŁU (ang. marginal revenue product of capital), MRP k, nie zrówna się z KOSZTEM STWORZENIA I WYKORZYSTYWANIA (WARTEJ 1) PORCJI KAPITAŁU (ang. rental cost of capital), rc (por. rozdział o rynkach czynników z podstaw ekonomii).

11 10 KRAŃCOWY PRZYCHÓD Z KAPITAŁU, MRP k, stanowi war- tość przyrostu produkcji spowodowanego wykorzystaniem (wartej 1) dodatkowej porcji kapitału. MRP k = MP kP, gdzie: MP k – malejący krańcowy produkt kapitału (w jednostkach fizycz- nych). P – cena dobra składającego się na ten krańcowy produkt kapitału, MP k.

12 11 KOSZT KORZYSTANIA Z KAPITAŁU, rc, stanowi przyrost kosz- tu całkowitego spowodowany stworzeniem i wykorzystywaniem (wartej 1) dodatkowej porcji kapitału. rc=(i r +d)=(i n -π e +d), gdzie: i r – oczekiwana realna stopa procentowa (w %), i n – nominalna stopa procentowa (w %), π e - oczekiwana stopa inflacji (w %), d – stopa zużycia kapitału (w %). [Uwaga! Założono, że wykorzystanie kapitału nie powoduje dodatko- wych kosztów (np. koszt zużywanego surowca)].

13 12 Firma zwiększa zapotrzebowanie na kapitał, aż krańcowy przy- chód z (wartej 1) porcji kapitału (ang. marginal revenue product of capital), MRP k, nie zrówna się z kosztem stworzenia i wykorzys- tywania tej porcji kapitału (ang. rental cost of capital), rc. MRP k = rc, więc: MP kP = (i n -π e +d).

14 13 DYGRESJA Niekiedy banki stosują LIMITOWANIE KREDYTU (ang. credit rationing). Banki komercyjne bronią się w ten sposób przed asy- metrią informacji (chodzi np. o NEGATYWNĄ SELEKCJĘ KREDYTOBIORCÓW PO WZROŚCIE STÓP PROCENTO- WYCH). LIMITOWANIE KREDYTU może sprawić, że inwestyc- je firm są MNIEJSZE niż wynikałoby z formuły: „MRP k = rc”. Przyczyną jest „bariera płynności”; tym razem natyka się na nią nie konsument, lecz chcąca inwestować firma. W wyjątkowych sytuacjach także bank centralny limitu- je kredyt w celu radykalnego zmniejszenia zagregowanego popy- tu (np. FED w USA i NBP w Polsce na początku – odpowiednio - lat 80. i 90. XX w.). (Obok stopy procentowej LIMITOWANIE KREDYTU jest ważnym narzędziem polityki pieniężnej). KONIEC DYGRESJI MRP k = rc, czyli: MP kP = (i n -π e +d)?

15 14 A zatem, MP kP = (i n -π e +d)... W innym ujęciu zapotrzebowanie JEDNEJ FIRMY na kapitał opisuje wzór (funkcja): k* = g(rc, y), gdzie: k* - to zapotrzebowanie jednej firmy na kapitał. rc - koszt korzystania z dodatkowej porcji kapitału. y – zapotrzebowanie na produkty tej firmy.* Zauważ, że - przy danej produktywności kapitału, MP k - wpływając na cenę wytwarzanego produktu, P, zapotrzebowanie na produkty firmy określa poziom krańcowego przychodu z kapitału MRP k (MRP k = MP kP).

16 15 CAŁA GOSPODARKA Podobną funkcję możemy wykorzystać dla wyjaśnienia zapotrzebo- wania na kapitał CAŁEJ GOSPODARKI. K* = G(rc, Y), gdzie: K* - zapotrzebowanie CAŁEJ GOSPODARKI na kapitał. rc - koszt korzystania z dodatkowej porcji kapitału. Y – wielkość produkcji CAŁEJ GOSPODARKI. Zapotrzebowanie gospodarki na kapitał rośnie dopóty, dopóki w tej gospodarce istnieją firmy, w których MRP k jest większe od rc.

17 16 A zatem: K* = G(rc, Y). ANALIZA ALGEBRAICZNA Powiedzmy, że gospodarkę opisuje FUNKCJA PRODUKCJI COBBA- DOUGLASA *: Y=A·K x ·L (1-x), gdzie: Y – wielkość produkcji. K - wykorzystywany w gospodarce zasób kapitału, L - wykorzystywany w gospodarce zasób pracy, A – parametr, x – parametr**. Możemy wtedy wyprowadzić funkcję popytu gospodarki na kapitał * Szczegółowo makroekonomiczną funkcją produkcji Cobba-Douglasa zaj- miemy się, badając wzrost gospodarczy. ** Dla x=0,25 funkcja produkcji Cobba-Douglasa stanowi bardzo dobre przybliżenie rzeczywistej funkcji produkcji gospodarki Stanów Zjednoczo- nych.

18 17 Y=A·K x ·L (1-x), Możemy teraz wyprowadzić funkcję popytu gospodarki na kapitał. Y =A·K x ·L (1-x), to: MP K =  Y/  K= =x·A·K (x-1) ·L (1-x) = =x·A·K x ·L (1-x) /K =x·Y/K* * MP K występuje tutaj w ujęciu wartościowym (nakład kapitału zmienia się o jednostkę wartości, co powoduje zmianę wartości Y). ** Zwróć uwagę na mało realistyczne założenie ceteris paribus towarzyszące tym wyliczeniom. Czynniki są substytutami i zmiana zapotrzebowania na je- den zapewne wpłynie na wielkość zapotrzebowania na inne. Np., kiedy spa- dek rc spowoduje wzrost K*, JEDNOCZEŚNIE zmniejszy się zapotrzebowa- nia na pracę, L! Zwrotnie wpłynie to zapewne na zapotrzebowanie na kapi- tał, czego nie uwzględniamy... Jak widać wzrost kosztu wykorzystania kapitału, rc, po- woduje spadek, a zwiększenie się produkcji, Y, wzrost zapotrzebo- wania gospodarki na kapitał, K. Skoro: MP K =rc, to: x·Y/K =rc, więc: K=x·Y/rc.**

19 18 A zatem: K = G(rc, Y), gdzie: K - zapotrzebowanie CAŁEJ GOSPODARKI na kapitał. rc - koszt korzystania z dodatkowej porcji kapitału. Y – wielkość produkcji CAŁEJ GOSPODARKI. Na przykład, K=g(rc, Y)=x·Y/rc.

20 19 Na przykład: K=g(rc, Y)=x·Y/rc. ANALIZA RYSUNKOWA Na rysunku (a) spadek kosztu korzystania z porcji kapitału (z rc 0 do rc 1 ) jest powodem przesunięcia wzdłuż linii popytu gospodarki na kapitał, D k, (zapo- trzebowanie gospodarki na kapitał rośnie z K 0 do K 1. Na rysunku (b) spadek produkcji w gospodarce przesuwa całą linię popytu firm na kapitał i zapo- trzebowanie nań maleje z K 0 do K 1. (b) (a) rc 0 rc 1 K 0 K 1 K K MRP k, rc rc* K 1 K 0 DkDk D k2 D k1 MRP k, rc

21 20 W KRÓTKIM OKRESIE CENOWA ELASTYCZNOŚĆ PODAŻY KAPITAŁU JEST BARDZO MAŁA. Wzrost popytu firm na kapi- tał powoduje wyłącznie silny wzrost ceny kapitału (z P k0 do P k1 na rysunku). Ilość kapitału w firmach, K 0, się nie zmienia. Popyt na kapitał, cena kapitału i ilość kapitału w firmach 1.2. POPYT NA KAPITAŁ A WIELKOŚĆ INWESTYCJI. W jaki sposób zmiany zapotrzebowania przedsiębiorstw na kapitał wpływają na wielkość inwestycji? K PkPk K 0 K 1 P k0 P k1 D k1 D k0

22 21 Natomiast W DŁUGIM OKRESIE zasób kapitału w firmach może się zwiększyć z K 0 do K 1, nie powodując wzrostu ceny. CENOWA ELASTYCZNOŚĆ PODAŻY KAPITAŁU OKAZUJE SIĘ BAR- DZO DUŻA. Popyt na kapitał, cena kapitału i ilość kapitału w firmach 1.2. POPYT NA KAPITAŁ A WIELKOŚĆ INWESTYCJI. W jaki sposób zmiany zapotrzebowania przedsiębiorstw na kapitał wpływają na wielkość inwestycji? K PkPk K 0 K 1 P k0 P k1 D k1 D k0

23 22 Wielkość STRUMIENIA inwestycji I 0 z rysunku (b) równoważy zu- życie kapitału, zapewniając istnienie ZASOBU kapitału K 0 na ry- sunku (a). Popyt na kapitał a wielkość inwestycji K PkPk K 0 K 1 P k0 P k1 D k1 D k0 (b) I 0 I 1 S PkPk 0 0 (a)

24 23 Kiedy popyt na kapitał wzrasta, zwiększają się wydatki na nowe dobra kapitałowe. Krótkokresowy skok ceny kapitału z P 0 do P 1 na rysunku (a) powoduje wzrost oferowanej ilości dóbr kapitałowych z I 0 do I 1 (np. z 80 do 90 obrabiarek rocznie) na rysunku (b). Popyt na kapitał a wielkość inwestycji K PkPk K 0 K 1 P k0 P k1 D k1 D k0 (b) I 0 I 1 S PkPk 0 0 (a)

25 24 Po pewnym czasie* zwiększony strumień inwestycji, I 1 > I 0, skutkuje powstaniem w firmach pożądanego zasobu kapitału K 1 (K 1 >K 0 ). Ce- na kapitału i wielkość inwestycji wracają wtedy do początkowych poziomów, P K0 i I 0 (dla uproszczenia zakładam, że nowy kapitał się nie zużywa) * Tempo tworzenia nowego kapitału jest ograniczone m. in. dostępnością za- sobów (np. inżynierów, koparek) i technologią (np. beton tężeje wolno, więc nie da się zbudować biurowca przez godzinę). Popyt na kapitał a wielkość inwestycji K PkPk K 0 K 1 P k0 P k1 D k1 D k0 (b) I 0 I 1 S PkPk 0 0 (a)

26 25 Inwestowanie i tworzenie kapitału w gospodarce są opisywane np. przez MODEL ELASTYCZNEGO AKCELERATORA (ang. flexib- le accelerator model): I t = λ·(K t *-K t-1 ), gdzie: I t – poziom inwestycji w okresie t. λ – (lambda) parametr opisujący tempo procesu dostosowawczego. λ zależy od tego, jaką część różnicy pożądanej w okresie t ilości kapi- tału (K t *) i rzeczywistej ilości kapitału w końcu poprzedniego okre- su (K t-1 ) CHCĄ/MOGĄ zlikwidować inwestujące firmy w okresie t. W okresie t pożądana ilość kapitału w gospodarce, K t *, zależy m. in. od oczekiwań przedsiębiorców, co do przyszłego średniego po- ziomu produkcji (przyszłego dochodu permanentnego). Upodabnia to teorię inwestycji do teorii konsumpcji. (W obu przypadkach do- chód permanentny jest ważną zmienną wyjaśniającą).

27 26 MODEL ELASTYCZNEGO AKCELERATORA: I t = λ·(K t *-K t-1 ), gdzie: 1. Parametr λ opisuje możliwości i plany firm (tempo tworzenia przez nie nowego kapitału jest ograniczone brakiem zasobów i tech- nologią).

28 27 MODEL ELASTYCZNEGO AKCELERATORA: I t = λ·(K t *-K t-1 ), gdzie: 1. Parametr λ opisuje możliwości i plany firm (tempo tworzenia przez nie nowego kapitału jest ograniczone brakiem zasobów i tech- nologią). 2. Jak zwykle w modelach akceleratora – WIELKOŚĆ zmiennej wyjaśnianej (tu: inwestycji w okresie t, I t ) jest uzależniona OD ZMIAN RÓŻNICY zmiennych wyjaśniających (tu: „luki kapitało- wej”, K t *-K t-1 ) [czyli od przyśpieszenia (inaczej: akceleracji) lub od spowolnienia wzrostu jednej z nich). Żeby inwestycje rosły, ta „luka kapitałowa” musi się zwiększać. Jeśli luka się zmniejszy, to – choć luka pozostanie dodatnia - inwestycje zaczną maleć (ich zmiana sta- nie się ujemna).

29 28 PRZYKŁAD: Produkcję w gospodarce opisuje funkcja: AK xL (1-x) ; x=0,2; Y=10 mld $; rc=0,20. a) Oblicz pożądany zasób kapitału.

30 29 PRZYKŁAD: Produkcję w gospodarce opisuje funkcja: AK xL (1-x) ; x=0,2; Y=10 mld $; rc=0,20. a) Oblicz pożądany zasób kapitału. K*=xY/rc=0,210,0/0,20=10,0 mld. b) O ile zmieni się on na skutek spodziewanego wzrostu produkcji do 12 mld?

31 30 PRZYKŁAD: Produkcję w gospodarce opisuje funkcja: AK xL (1-x) ; x=0,2; Y=10 mld $; rc=0,20. a) Oblicz pożądany zasób kapitału. K*=xY/rc=0,210,0/0,20=10,0 mld. b) O ile zmieni się on na skutek spodziewanego wzrostu produkcji do 12 mld? K*=xY/rc=0,212,0/0,20=12,0 mld. Pożądany zasób kapitału rośnie o 2,0 mld. c) Parametr λ w modelu elastycznego akceleratora równa się 0,5. Co to znaczy?

32 31 PRZYKŁAD: Produkcję w gospodarce opisuje funkcja: AK xL (1-x) ; x=0,2; Y=10 mld $; rc=0,20. a) Oblicz pożądany zasób kapitału. K*=xY/rc=0,210,0/0,20=10,0 mld. b) O ile zmieni się on na skutek spodziewanego wzrostu produkcji do 12 mld? K*=xY/rc=0,212,0/0,20=12,0 mld. Pożądany zasób kapitału rośnie o 2,0 mld. c) Parametr λ w modelu elastycznego akceleratora równa się 0,5. Co to znaczy? Parametr λ równy 0,5 znaczy, że w ciągu roku firmy chcą i mogą zainwestować kwotę równą połowie „luki kapitałowej” (różnicy rzeczywistej i pożądanej ilości posiadanego kapitału rzeczowego). d) Załóż, że ilość kapitału była równa ilości pożądanej. Ile wyniosą inwestycje w pierwszym roku po tej oczekiwanej zmianie poziomu produkcji?

33 32 PRZYKŁAD: Produkcję w gospodarce opisuje funkcja: AK xL (1-x) ; x=0,2; Y=10 mld $; rc=0,20. a) Oblicz pożądany zasób kapitału. K*=xY/rc=0,210,0/0,20=10,0 mld. b) O ile zmieni się on na skutek spodziewanego wzrostu produkcji do 12 mld? K*=xY/rc=0,212,0/0,20=12,0 mld. Pożądany zasób kapitału rośnie o 2,0 mld. c) Parametr λ w modelu elastycznego akceleratora równa się 0,5. Co to znaczy? Parametr λ równy 0,5 znaczy, że w ciągu roku firmy chcą i mogą zainwestować kwotę równą połowie „luki kapitałowej” (różnicy rzeczywistej i pożądanej ilości posiadanego kapitału rzeczowego). d) Załóż, że ilość kapitału była równa ilości pożądanej. Ile wyniosą inwestycje w pierwszym roku po tej oczekiwanej zmianie poziomu produkcji? W pierwszym roku te inwestycje wyniosą: 0,5(12-10) mld = 1,0 mld. e) A ile wyniosą one w drugim, trzecim i czwartym roku?

34 33 PRZYKŁAD: Produkcję w gospodarce opisuje funkcja: AK xL (1-x) ; x=0,2; Y=10 mld $; rc=0,20. a) Oblicz pożądany zasób kapitału. K*=xY/rc=0,210,0/0,20=10,0 mld. b) O ile zmieni się on na skutek spodziewanego wzrostu produkcji do 12 mld? K*=xY/rc=0,212,0/0,20=12,0 mld. Pożądany zasób kapitału rośnie o 2,0 mld. c) Parametr λ w modelu elastycznego akceleratora równa się 0,5. Co to znaczy? Parametr λ równy 0,5 znaczy, że w ciągu roku firmy chcą i mogą zainwestować kwotę równą połowie „luki kapitałowej” (różnicy rzeczywistej i pożądanej ilości posiadanego kapitału rzeczowego). d) Załóż, że ilość kapitału była równa ilości pożądanej. Ile wyniosą inwestycje w pierwszym roku po tej oczekiwanej zmia-nie poziomu produkcji? W pierwszym roku te inwestycje wyniosą: 0,5(12-10) mld = 1,0 mld. e) A ile wyniosą one w drugim, trzecim i czwartym roku? W drugim roku poziom inwestycji będzie równy: 0,5(12-11) mld = 0,5 mld. W trzecim roku poziom inwestycji wyniesie: 0,5(12,0-11,5) mld = 0,25 mld. W czwartym roku zainwestowane zostanie: 0,5(12,0-11,75) mld = 0,125 mld. f) Jakie założenie o długości czasu, po którym inwestycje zamienia- ją się w dobra kapitałowe (czasu „dojrzewania” inwestycji) przy- jęłaś? Jak to założenie wpłynęło na obliczenia?

35 34 PRZYKŁAD: Produkcję w gospodarce opisuje funkcja: AK xL (1-x) ; x=0,2; Y=10 mld $; rc=0,20. a) Oblicz pożądany zasób kapitału. K*=xY/rc=0,210,0/0,20=10,0 mld. b) O ile zmieni się on na skutek spodziewanego wzrostu produkcji do 12 mld? K*=xY/rc=0,212,0/0,20=12,0 mld. Pożądany zasób kapitału rośnie o 2,0 mld. c) Parametr λ w modelu elastycznego akceleratora równa się 0,5. Co to znaczy? Parametr λ równy 0,5 znaczy, że w ciągu roku firmy chcą i mogą zainwestować kwotę równą połowie „luki kapitałowej” (różnicy rzeczywistej i pożądanej ilości posiadanego kapitału rzeczowego). d) Załóż, że ilość kapitału była równa ilości pożądanej. Ile wyniosą inwestycje w pierwszym roku po tej oczekiwanej zmia-nie poziomu produkcji? W pierwszym roku te inwestycje wyniosą: 0,5(12-10) mld = 1,0 mld. e) A ile wyniosą one w drugim, trzecim i czwartym roku? W drugim roku poziom inwestycji będzie równy: 0,5(12-11) mld = 0,5 mld. W trzecim roku poziom inwestycji wyniesie: 0,5(12,0-11,5) mld = 0,25 mld. W czwartym roku zainwestowane zostanie: 0,5(12,0-11,75) mld = 0,125 mld. f) Jakie założenie o długości czasu, po którym inwestycje zamienia- ją się w dobra kapitałowe (czasu „dojrzewania” inwestycji) przy- jęłaś? Jak to założenie wpłynęło na obliczenia? Przyjąłem założenie, że inwestycje „dojrzewają” (zostają ukończo- ne) w ciągu jednego roku. W efekcie np. w końcu pierwszego roku zasób kapitału w tej gospodarce powiększył się z 10,0 mld do 11,0 mld.

36 35 DYGRESJA Oto nawiązujący do modelu elastycznego akceleratora rozbudowa- ny „endogeniczny” MODEL MNOŻNIKA-AKCELERATORA, wyjaśniający cykl koniunkturalny. (a) I t =(K * t -K t ) Model elastycznego akceleratora (ang. flexible accelerator model) opisuje tworzenie kapitału rzeczowego przez firmy. (b) K * t = aY t-1 Pożądana ilość kapitału rzeczowego, K*, jest proporcjonalna do wielkości produkcji, Y, w poprzednim okresie. ( c) K t =K * t -1 Oznacza to, że =1. Firmy chcą i mogą w ciągu zaledwie jednego okresu zamknąć całą „lukę kapitałową” (K * t -K t ). Z równań (a), (b) i (c) wynika, że: I t =(K * t -K t )=(K * t -K * t-1 )=(aY t-1 -aY t-2 )=a(Y t-1 -Y t-2 )= a  Y t-1, czyli: I t = a  Y t-1 gdzie a to uzależniony od technologii „współczynnik kapitałowy” = I t /  Y t-1.

37 36 DYGRESJA CD. Z równań (a), (b) i (c) wynika, że: I t =(K * t -K t )=(K * t -K * t-1 )=(aY t-1 -aY t-2 )=a(Y t-1 -Y t-2 )= a  Y t-1, czyli: I t = a  Y t-1 (1) gdzie a to uzależniony od technologii „współczynnik kapitałowy” = I t /  Y t-1. Natomiast zgodnie z modelem mnożnika:  Y t =   I t (2) gdzie  to mnożnik.

38 37 DYGRESJA CD. A zatem: I t =a  Y t-1 (1)  Y t =   I t (2) MODEL MNOŻNIKA-AKCELERATORA: [(1)+(2)] wy- jaśnia cykl koniunkturalny...

39 38 DYGRESJA CD. A zatem: I t =a  Y t-1 (1)  Y t =   I t (2) Kiedy  Y t-1 rośnie, I t też rośnie, tzn.  I t >0 [zob. równa- nie (1)]. Wzrost inwestycji,  I t >0, wywołuje wtedy proces mnoż- nikowy, czyli dalszy wzrost produkcji,  Y t [zob. równanie (2):  Y t =   I t ; zakładam, że mnożnik działa bez opóźnienia]. Jednak w końcu wzrost produkcji zwalnia, czyli  Y t <  Y t-1 (rzeczywista produkcja zbliża się wtedy do wielkości pro- dukcji potencjalnej i coraz trudniej jest osiągnąć jej przyrost). Powoduje to ZMNIEJSZENIE SIĘ inwestycji, I (mniejszemu  Y odpowiada mniejsze I!). MIMO, ŻE ZMIANA POZIOMU PRO- DUKCJI,  Y, CIĄGLE JESZCZE JEST DODATNIA, POZIOM INWESTYCJI, I, MALEJE, WIĘC ZMIANA POZIOMU IN- WESTYCJI,  I, STAJE SIĘ JUŻ UJEMNA! Mnożnik sprawia wtedy, że produkcja, Y, maleje (  Y staje się ujemne). PRODUKCJA, KTÓRA ROSŁA, ZACZYNA OTO SPADAC! (Odwołując się do podobnego procesu, można wyjaśnić również dolny punkt zwrotny cyklu).

40 39 Inwestycje netto i produkcję opisują rów nania: I t =a  Y t-1 i  Y t =   I t, współczynnik kapitałowy, a, wynosi ½, a mnożnik, , równa się 2; pomiń zużycie kapitału. Sytuację w gospodarce w dwóch pierw- szych okresach opisuje tabela. a) Ile wynoszą inwestycje netto, I 3, w 3. okresie? YtYt ItIt Y t-1 -Y t-2 t

41 40 Inwestycje netto i produkcję opisują rów nania: I t =a  Y t-1 i  Y t =   I t, współczynnik kapitałowy, a, wynosi ½, a mnożnik, , równa się 2; pomiń zużycie kapitału. Sytuację w gospodarce w dwóch pierw- szych okresach opisuje tabela. a) Ile wynoszą inwestycje netto, I 3, w 3. okresie? a) YtYt ItIt Y t-1 -Y t-2 t YtYt ItIt Y t-1 -Y t-2 t b) Ile wynosi produkcja, Y 3, w 3. okresie?

42 41 Inwestycje netto i produkcję opisują rów nania: I t =a  Y t-1 i  Y t =   I t, współczynnik kapitałowy, a, wynosi ½, a mnożnik, , równa się 2; pomiń zużycie kapitału. Sytuację w gospodarce w dwóch pierw- szych okresach opisuje tabela. a) Ile wynoszą inwestycje netto, I 3, w 3. okresie? a) YtYt ItIt Y t-1 -Y t-2 t YtYt ItIt Y t-1 -Y t-2 t b) Ile wynosi produkcja, Y 3, w 3. okresie? c) Uzupełnij 4. i 5. wiersz tabeli.

43 42 Inwestycje netto i produkcję opisują rów nania: I t =a  Y t-1 i  Y t =   I t, współczynnik kapitałowy, a, wynosi ½, a mnożnik, , równa się 2; pomiń zużycie kapitału. Sytuację w gospodarce w dwóch pierw- szych okresach opisuje tabela. a) Ile wynoszą inwestycje netto, I 3, w 3. okresie? a) YtYt ItIt Y t-1 -Y t-2 t YtYt ItIt Y t-1 -Y t-2 t b) Ile wynosi produkcja, Y 3, w 3. okresie? c) Uzupełnij 4. i 5. wiersz tabeli. d) Dlaczego taki model zasługuje na miano endogenicznego (nie eg- zogenicznego) modelu cyklu?

44 43 Inwestycje netto i produkcję opisują rów nania: I t =a  Y t-1 i  Y t =   I t, współczynnik kapitałowy, a, wynosi ½, a mnożnik, , równa się 2; pomiń zużycie kapitału. Sytuację w gospodarce w dwóch pierw- szych okresach opisuje tabela. a) Ile wynoszą inwestycje netto, I 3, w 3. okresie? a) YtYt ItIt Y t-1 -Y t-2 t YtYt ItIt Y t-1 -Y t-2 t b) Ile wynosi produkcja, Y 3, w 3. okresie? c) Uzupełnij 4. i 5. wiersz tabeli. d) Dlaczego taki model zasługuje na miano endogenicznego (nie eg- zogenicznego) modelu cyklu? W modelu mnożnika-akceleratora cykl jest WYŁĄCZNIE wynikiem zachowań gospodarstw domowych i przedsiębiorstw, a nie efektem oddziaływania przyczyn w stosunku do modelu „zewnętrznych” (np. interwencji państwa). KONIEC DYGRESJI

45 44 Ramka 1. Firma zwiększa zapotrzebowanie na kapitał, aż krańcowy przychód z kapitału nie okaże się mniejszy od kosztu korzystania z kapitału. MRP k = rc, więc: MP kP = (i n -π e +d). Teoretycznie decyzja podejmowana zgodnie z tą regułą dotyczy za- kupu kolejnej MAŁEJ porcji kapitału. W praktyce firmom chodzi o realizację całych projektów inwestycyjnych. W grę wchodzi wte- dy DUŻY przyrost ilości użytkowanego kapitału. Odpowiednikiem MRP K są wtedy zdyskontowane na moment podejmowania decyzji zyski netto z realizacji projektu, a odpowiednikiem rc są zdyskontowane nakłady na realizację projektu. Projekt jest wart realizacji, jeśli jego ZAKTUALIZOWA- NA WARTOŚĆ NETTO (ang. present value of the net revenue), czy- li różnica zdyskontowanych zysków netto i zdyskontowanych nak- ładów jest większa od zera (stopa dyskontowa powinna być równa stopie, przy której przedsiębiorstwo może zaciągnąć kredyt)*. Sumując popyt inwestycyjny wynikający z decyzji o reali- zacji wszystkich zaakceptowanych projektów inwestycyjnych, dos- tajemy całkowity popyt na inwestycje w gospodarce *Pamiętasz? Przy danej stopie procentowej obligację warto kupić po cenie niższej od zaktualizowanej wartości strumienia zysków netto gwarantowa- nych jej posiadaniem. Dla takiej ceny zaktualizowana wartość netto tej ob- ligacji wynosi zero.

46 45 Koszt korzystania z kapitału, rc, zależy nie tylko od poziomu stopy procentowej, czyli od polityki pieniężnej, lecz również od podat- ków, czyli od polityki fiskalnej. Decydujące znaczenie mają: CIT (ang. corporate income tax) i ULGI INWESTYCYJNE (ang. invest- ment tax credit). INWESTYCJE A PODATKI 1.3. INWESTYCJE A PODATKI I GIEŁDA.

47 46 CIT stanowi proporcjonalne opodatkowanie zysku firm (np. USA od 1993 r. 35%). „rc” jest proporcjonalny do CIT* * Oddawaną przez firmę państwu część zysku można uznać za koszt osią- gania tego zysku, czyli koszt wykorzystywania kapitału w celu osiągania zysku.

48 47 ULGI INWESTYCYJNE – możliwość odliczania od płaconego podatku odsetka (np. 10%) poniesionych nakładów inwestycyj- nych (np. USA w latach )*. „rc” jest odwrotnie pro- porcjonalny do ulg inwestycyjnych * Ulgi inwestycyjne mogą być trwałe lub chwilowe (przejściowe). Ulgi chwilowe (przejściowe) powodują SZTUCZNE SKUPIENIE PLANOWA- NYCH INWESTYCJI FIRM w okresie objętym tymi ulgami.

49 48 INWESTYCJE A GIEŁDA WSPÓŁCZYNNIK q (q TOBINA) to stosunek ceny porcji kapi- tału firmy na giełdzie do (ekonomicznego) kosztu odtworzenia tej porcji kapitału. Zgodnie z „teorią inwestycji q” (Tobina), kiedy q>1, firmy inwestują, ponieważ prawo do kapitału rzeczowego, którego stwo- rzenie kosztuje 1, są w stanie sprzedać na giełdzie za więcej niż 1. Zatem odpowiednio długa hossa na giełdzie sprzyja inwestycjom. „Teoria inwestycji q” Tobina ma niezłe potwierdzenie em- piryczne...

50 49 2. RODZAJE INWESTYCJI: INWESTYCJE FIRM, BUDOWNIC- TWO MIESZKANIOWE, ZAPASY Najważniejsze rodzaje inwestycji w gospodarce to: - INWESTYCJE PRZEDSIĘBIORSTW, - BUDOWNICTWO MIESZKANIOWE, - ZAPASY. Inwestycje przedsiębiorstw są największym i najbardziej stabilnym składnikiem skądinąd bardzo zmiennych inwestycji. Inwestycje mieszkaniowe są mniejsze i bardziej zmienne. Najbardziej gwałtowne są zmiany zapasów, które jednak są najmniejszą częścią inwestycji.

51 INWESTYCJE PRZEDSIĘBIORSTW W KAPITAŁ TRWAŁY Ten rodzaj inwestycji jest największą częścią wszystkich inwestycji (w USA w 2. połowie XX w. około 65% wszystkich inwestycji). Ta- kie inwestycje silnie maleją w czasie recesji (np. w czasie Wielkiego Kryzysu w latach trzydziestych XX w. w USA spadły do 4% PKB). W czasie ożywienia inwestycje firm zaczynają rosnąć.

52 51 W USA inwestycje firm są finansowane niepodzielonymi zyskami (około 70% środków w latach ), kredytem bankowym (ok. 25% środków) i – w małym zakresie - emisją obligacji i akcji. Oznacza to, że skala tych inwestycji zależy silnie od sytua- cji finansowej firm [wcześniej nie uwzględnialiśmy wprost tego czynnika wpływającego na wielkość inwestycji, koncentrując uwa- gę na narzędziach polityki pieniężnej (np. stopa procentowa, limi- towanie kredytu) i fiskalnej (np. CIT, ulgi inwestycyjne)].

53 BUDOWNICTWO MIESZKANIOWE W Stanach w 2. połowie XX w. inwestycje mieszkaniowe stanowiły około 30% wszystkich inwestycji. Budynki mieszkalne (jednorodzinne i wielorodzinne) są bardzo trwałym rodzajem kapitału rzeczowego. Duża wartość jed- nostkowa i powszechność użytkowania budynków mieszkalnych sprawiają, że ich zasób w gospodarce jest – w danym momencie – szczególnie duży. W tym sektorze gospodarki relacja strumienia inwestycji do wartości zasobu już nagromadzonego kapitału jest zatem szcze- gólnie mała (np. w USA ok. 3%). W efekcie małe zmiany zapotrzebowania powodują szcze- gólnie duże zmiany poziomu inwestycji mieszkaniowych.

54 53 Inwestycje mieszkaniowe są szczególnie wrażliwe na zmiany stopy procentowej. Ma to następujące powody: 1. Producenci są zmuszeni ponosić duże wydatki PRZED sprzedażą gotowego produktu (domu). Zmusza ich to do zaciągania kredytu. 2. Także nabywcy mieszkań często finansują zakup mieszkania DŁU- GOTERMINOWYM (20-30 lat!) kredytem hipotecznym przy sta- łych ratach miesięcznych. Te raty składają się wtedy głównie z odse- tek i ich wysokość bardzo silnie zależy od poziomu stopy procen- towej. (W przybliżeniu rata miesięczna podwaja się, gdy stopa pro- centowa się podwaja).

55 INWESTYCJE W ZAPASY W Stanach Zjednoczonych w 2. połowie XX w. inwestycje w zapasy stanowiły około 5% wszystkich inwestycji. Zmiany zapasów są powodowane różnicami wielkości produkcji i zapotrzebowania na wytwarzane produkty (wielkości sprzedaży). Te różnice są wynikiem BŁĘDNEGO PLANOWANIA w firmach. Ważne są także OKOLICZNOŚCI TECHNICZNE. W efekcie choć zapasy są najmniejszą częścią inwestycji (ok. 1% PKB), to okazują się najbardziej zmiennym ich składni- kiem. W dodatku – ICH ZMIANY MOGĄ BYĆ DODATNIE LUB UJEMNE (chodzi o spadek i wzrost wielkości zapasów). Powoduje to, że zmiany zapasów wywierają bardzo silny wpływ na przebieg cyklu koniunkturalnego.

56 55 * W skład zapasów wchodzą: 1. Surowce, 2. Produkcja w toku, 3. Produkcja gotowa, lecz nie sprzedana.

57 56 W USA relacja wartości zapasów do wartości sprzedaży na począt- ku XXI w. zmniejszyła się z około 17% do około 12%. Przyczyną były innowacje takie jak SYSTEM DOSTAW DOSTAW JUST–IN- TIME. Chodzi o powstałe w Japonii rozwiązania organizacyjne pozwalające – dzięki precyzyjnej koordynacji czasowej produkcji i dostaw surowców, półproduktów itp. – wytwarzać towar tuż przed jego sprzedażą i dzięki temu znacznie zmniejszyć ilość zapasów w firmie, a więc także koszt trzymania tych zapasów.

58 57 „TECHNICZNE” PRZYCZYNY ISTNIENIA ZAPASÓW Zapasy są tworzone m. in. w celu: UŁATWIENIA SZYBKIEGO ZASPOKAJANIA BARDZ O ZMIEN- NEGO POPYTU Na przykład, warunkiem zdobycia (nieutracenia) klienta bywa zademonstrowanie i (lub) odpowiednio szybka dostawa towa- ru. Z kolei ich warunkiem może się okazać posiadanie (odpowied- nio dużych) zapasów tego towaru.

59 58 Zapasy są tworzone m. in. w celu: ZMNIEJSZENIA RYZYKA TOWARZYSZĄCEGO GOSPODA- ROWANIU Na przykład, zapasy części zamiennych zmniejszają ryzyko za- trzymania produkcji w wyniku awarii.

60 59 Zapasy są tworzone m. in. w celu: OBNIŻENIA KOSZTÓW TRANSAKCYJNYCH Wygodniejsze i tańsze są zwykle względnie rzadkie zakupy dużej ilości surowców, materiałów i półproduktów niż zakupy małe, lecz częste. (Zazwyczaj do hipermarketu po mięso, mleko i soki kon- sumenci także jeżdzą, powiedzmy, raz na dwa tygodnie, a nie – codziennie).

61 60 Zapasy są tworzone m. in. w celu: „WYGŁADZENIA” PRODUKCJI Chodzi o stabilizowanie wielkości produkcji, co może być pożądane z przyczyn technicznych (np. charakterystyka urządzeń produkcyj- nych) lub ekonomicznych (np. porozumienie ze związkami o braku przestojów). W takiej sytuacji w okresie niskiego popytu firma pro- dukuje „na skład”, a kiedy popyt jest duży, magazyn stopniowo się opróżnia.

62 61 Przyczyną istnienia zapasów może być również SAMA TECHNOLOGIA PRODUKCJI Produkcja dóbr zwykle składa się z wielu etapów. Powoduje to, że w firmach zawsze istnieje produkcja w toku (np. samochody, które jeszcze nie zeszły z taśmy produkcyjnej, ropa w rurociągu). * Ogólnie, FIRMY STARAJĄ SIĘ UTRZYMYWAĆ STAŁĄ RE- LACJĘ ZAPASÓW DO WIELKOŚCI PRODUKCJI. Oczywiście trzymanie zapasów powoduje koszt alternatywny w postaci utraconego oprocentowania środków „zamrożonych” w formie zapasów. Wynika stąd, że wielkość zapasów zmienia się odwrotnie niż realna stopa procentowa.

63 62 ZMIANY STANU ZAPASÓW Ponieważ firmy starają się utrzymywać stałą relację zapasów do wielkości produkcji, zmiany wielkości zapasów w gospodarce (tzw. cykl zapasów) dobrze wyjaśnia prosty MODEL AKCELERATO- RA: I Zt = α(Y t -Y t-1 ). Zauważ, że – jak zwykle w przypadku modeli akcelera- tora – POZIOM inwestycji w okresie t, I t, jest tu uzależniony OD ZMIAN POZIOMU PRODUKCJI w porównaniu z poprzednim okresem, Y t -Y t-1 =ΔY t [czyli od przyśpieszenia (inaczej: akceleracji) lub spowolnienia procesu wzrostu produkcji], a NIE OD SAME- GO TEGO POZIOMU. W efekcie SPOWOLNIENIE WZROSTU produkcji, Y, może spowodować SPADEK wielkości inwestycji, I Z.

64 63 Bardziej szczegółowa obserwacja zmian wielkości zapasów w trak- cie cyklu koniunkturalnego ujawnia CYKL ZAPASÓW. Kiedy zagregowany popyt i produkcja się zmniejszają, początkowo zapasy rosną. Jednak wcześniej czy później zaniepoko- jone tym firmy (silnie) zmniejszają produkcję, zaspokajając popyt za pomocą zapasów i osiągając w ten sposób pożądany niski po- ziom zapasów. Skutkiem jest POGŁĘBIENIE recesji. (Produkcja nie zmalałaby tak bardzo, gdyby nie trzeba bylo pozbyć się nagro- madzonych wcześniej, zbyt dużych zapasów).

65 64 Bardziej szczegółowa obserwacja zmian wielkości zapasów w trak- cie cyklu koniunkturalnego ujawnia tzw. cykl zapasów. Kiedy natomiast po recesji nadchodzi ożywienie i produk- cja rośnie, przewidując dalszy szybki wzrost popytu, firmy zaczy- nają gromadzić dodatkowe zapasy.* Skutkiem jest skokowe zwięk- szenie popytu i PRZYŚPIESZENIE ożywienia. (Produkcja rosłaby wolniej, gdyby nie trzeba było tworzyć dużych zapasów) * Jak pamiętamy, przedsiębiorstwa starają się utrzymywać stałą relacją wartości zapasów do wartości produkcji.

66 65 Zauważmy: taki CYKL ZAPASÓW i opisany wcześniej model mnożnika-akceleratora uzupełniają się. CYKL ZAPASÓW wzmac- nia wahania poziomu produkcji i inwestycji spowodowane działa- niem mnożnika-akceleratora.

67 66 3. INWESTYCJE A WIELKOŚĆ PRODUKCJI POTENCJALNEJ W wyniku inwestycji powstaje kapitał rzeczowy. Inwestycje wpły- wają zatem na zdolność gospodarki do wytwarzania dóbr, czyli na wielkość produkcji potencjalnej. W KRÓTKIM OKRESIE TEN WPŁYW JEST SŁABY, A W DŁUGIM – DECYDUJĄCY. Oto uzasadnienie...

68 67 W KRÓTKIM OKRESIE WPŁYW INWESTYCJI NA POZIOM PRODUKCJI POTENCJALNEJ JEST MAŁY, A W DŁUGIM – DUŻY. KRÓTKI OKRES Załóżmy, że roczne inwestycje wzrosłyby o ¼ (aż taki wzrost inwes- tycji nie zdarza się w praktyce!). Skutkiem byłby wzrost ilości kapi- tału w gospodarce o około 1/60≈1,6%. Przecież roczny strumień in- westycji np. w USA stanowi 1/15=6,(6)% istniejącego tu zasobu ka- pitału.* (Założyłem, że inwestycje są kończone w ciągu jednego ro- ku) *Skoro ilość 6,(6)% całego kapitału zwiększyła się o ¼, to osiągnęła poziom 6,(6)%(1+¼)=8,(3)% kapitału. Oznacza to wzrost ilości kapitału o [0,08(3)- 0,0(6)]/1,0=1,(6)%.

69 68 W KRÓTKIM OKRESIE WPŁYW INWESTYCJI NA POZIOM PRODUKCJI POTENCJALNEJ JEST MAŁY, W DŁUGIM – DUŻY. KRÓTKI OKRES CD:  Y/Y≈x·  K/K+(1-x)·  L/L+  A/A Załóżmy, że roczne inwestycje wzrosłyby o ¼. Skutkiem byłby do- datkowy wzrost ilości kapitału w gospodarce o około 1,6%... Dzięki RACHUNKOWOŚCI WZROSTU wiemy, iż:  Y/Y ≈x·  K/K +(1-x)·  L/L+  A/A* (por. pierwszy wykład o wzroście gos- podarczym). Zatem przyrost ilości kapitału, K, w gospodarce podobnej do USA (x≈0,25) o 1,(6)% spowoduje wzrost PKB (Y) o około 0,4%. Zatem w praktyce nawet bardzo znaczne zwiększenie po- ziomu prywatnych inwestycji, I, (np. o 10%), spowoduje jedynie trudno uchwytny statystycznie wzrost produkcji potencjalnej, Y *Y to PKB, L to zasób pracy, K to zasób kapitału, x to parametr, A to parametr.

70 69 W KRÓTKIM OKRESIE WPŁYW INWESTYCJI NA POZIOM PRODUKCJI POTENCJALNEJ JEST MAŁY, A W DŁUGIM – DUŻY. W DŁUGIM OKRESIE KRÓTKOOKRESOWY WPŁYW IN- WESTYCJI NA PRODUKCJĘ POTENCJALNĄ KUMULUJE SIĘ. Obserwacja ujawnia, że duże inwestycje są skorelowane z wysokim tempem wzrostu gospodarczego.* Istotne jest, że INWESTYCJOM TOWARZYSZY POS- TĘP TECHNICZNY. Dodatkowo przyśpiesza to wzrost. Japonia Izrael Kanada Brazylia RFN Meksyk W.Brytania Nigeria USA India Bangladesz Chile Rwanda Japonia Izrael Kanada Brazylia RFN Meksyk W.Brytania Nigeria USA India Bangladesz Chile Rwanda (a) Stopa wzrostu, (b) Inwestycje, WZROST GOSPODARCZY A INWESTYCJE. Rysunek (a) poka- zuje stopę wzrostu PKB per capita w 15 krajach w latach , a rysunek (b) odsetek PKB przeznaczany przez te kraje w tym okre- sie na inwestycje. Widać wyraźną korelację poziomu inwestycji i tempa wzrostu *Zob. G. Mankiw, Principles of Economics, 1998, s Stopa wzrostu (%) Inwestycje (% PKB)

71 70 ZRÓB TO SAM! Tak czy nie? 1. Kapitał rzeczowy powstaje tylko w efekcie inwestycji prywatnych firm. 2. Wydatki inwestycyjne prywatnych przedsiębiorstw stanowią zwyk- le największą i najbardziej stabilną część PKB. 3. Kiedy zasób kapitału w gospodarce się nie zmienia, inwestycje nie istnieją. 4. Już małe zmiany zapotrzebowania na zasób kapitału powodują du- że zmiany strumienia inwestycji. 5. Zaktualizowana wartość netto projektu inwestycyjnego jest zawsze większa od zera.

72 71 6. Im większy jest parametr λ w „modelu elastycznego akcelerato- ra”, tym szybsze (ceteris paribus) jest tempo zamykania „luki kapitałowej” w gospodarce. 7. Kiedy w przypadku pewnej firmy współczynnik q Tobina jest więk- szy od 1, krańcowy produkt kapitału jest większy od jego krań- cowego kosztu. 8. Rosnące zapasy zawsze zwiastują początek recesji.

73 72 9. Nowe techniki zarządzania zapasami w rodzaju metody just-in-time przyczyniają się do zmniejszenia wahań koniunkturalnych. 10. Model mnożnika-akceleratora i model „cyklu zapasów” uzupełnia- ją się.

74 73 ZRÓB TO SAM! Zadania: 1. Popyt na produkty pewnego przedsiębiorstwa zwiększył się. Jakie czynniki decydują o sile wpływu tego zdarzenia na wielkość inwes- tycji tej firmy? Dlaczego?

75 74 2. Produkcję w gospodarce opisuje funkcja: Y=AK xL (1-x). a) Jak na- zywa się taka funkcja? b) Wskaż zmienne niezależne i parametry tej funkcji. Co one ozna- czają? c) Wyprowadź wzór funkcji popytu na kapitał rzeczowy w tej gos- podarce.

76 75 3. Produkcję w gospodarce opisuje funkcja: AK xL (1-x) ; x=0,3; Y=5 mld $; rc=0,12. a) Oblicz pożądaną wielkość zasobu kapitału w tej gospodarce. b) O ile zmieni się ona na skutek spodziewanego wzrostu produkcji do 6 mld? c) Załóż, że przed tym wzrostem pro-dukcji ilość kapitału w tej gospodarce była równa pożądanej ilości kapitału. Parametr λ w modelu elastycznego akceleratora równa się 0,4. Ile wyniosą inwestycje w pierwszym roku po tej oczekiwanej zmianie poziomu produkcji? d) A ile wyniosą one w następnym roku? Jakie założenie o długości czasu „dojrzewania” inwestycji przyjęłaś? Co to znaczy? Pokaż, jak to założenie wpłynęło na Twoje obliczenia.

77 76 4.Inwestycje netto i produkcję opisują rów nania: I t =a  Y t-1 i  Y t =   I t, współczynnik kapitałowy, a, wynosi ½, a mnożnik, , równa się 2; pomiń zużycie kapitału. Sytuację w gospodarce w 2 pierwszych okresach opisuje tabela. a) Ile wynoszą inwestycje netto, I 3, w 3. ok- resie? YtYt ItIt Y t-1 -Y t-2 t b) Ile wynosi produkcja, Y 3, w 3. okresie? c) Uzupełnij 4. i 5. wiersz tabeli. d) Dlaczego taki model zasługuje na miano endogenicznego (nie eg- zogenicznego) modelu cyklu?

78 77 5. Inwestycje netto i produkcję opisują rów nania: I t =a  Y t-1 i  Y t =   I t, współczynnik kapitałowy, a, wynosi ½, a mnożnik, , równa się 2; pomijamy zużycie kapitału. Gospodarkę w 5 kolejnych okresach opisuje tabela. a) „Tylko jeśli produkcja nie rośnie, inwestycje nie rosną i produkcja zaczyna spadać”. Pokaż, że to nieprawda. b) Uzupełnij to zdanie tak, aby stało się prawdziwe YtYt ItIt Y t-1 -Y t-2 t

79 78 6. W praktyce decyzje o inwestowaniu przybierają formę analizy zdys- kontowanych strumieni pieniądza. a) Wyjaśnij, co wspólnego ma krańcowy przychód z kapitału, MRP K, i krańcowy koszt kapitału, rc, z taką analizą. b) Oto koszty (C 1, C 2 ) i zyski netto (P 1, P 2 ) reali-zacji dwuletniego projektu: C 1 =140, C 2 =0; P 1 =40, P 2 =110. Załóż, że pojawiają się one na początku roku. Oblicz zaktualizowaną wartość netto (ang. Pre- sent value of the net revenue) tego projektu (załóż, że stopa procento- wa wynosi 10%). c) Czy opłaca się zrealizować ten projekt przy stopie procentowej: (i) 7%; (ii) 12%? Dlaczego? d) Dlaczego wzrost stóp procentowych zmniejsza inwestycje? [Odwołaj się do odpowiedzi na pytanie (c)].

80 79 7. Jak zmieni się poziom inwestycji na skutek następujących zdarzeń. Dlaczego? a) Zwiększyły się zyski firm. b) Obniżyła się nominalna stopa procentowa. c) Banki zaczęły stosować „limitowanie kredytów”. d) Hossa na giełdzie sprawiła, że współczynnik „q” Tobina wzrósł z 0,9 do 1,2.

81 80 8. Na przeciąg roku państwo wprowadziło ulgę inwestycyjną: firmy mogą odliczyć od podatku CIT 12% wydatków poniesionych na inwestycje. Jak wpłynie to na: a) Poziom inwestycji w tym roku? Dlaczego? b) Poziom inwestycji w następnym roku? Dlaczego? c) Poziom inwestycji za 5 lat? d) A jak na poziom inwestycji przedsiębiorstw wpłynęłoby bezter- minowe wprowadzenie takich ulg inwestycyjnych?

82 81 9. W niektórych krajach (np. w USA) raty hipoteczne kredytów mieszkaniowych odlicza się od podatku dochodowego. a) Jak są- dzisz, jak wpływa to na wielkość inwestycji? Dlaczego? b) Dlaczego wielu obserwatorów uważa, że sprzyja to społecznej stabilności? c) Dlaczego wielu obserwatorow ma to za niesprawiedliwe?

83 Czy w krótkim okresie na poziom PKB silniej wpłynie: obniżenie podatków o 10 mld zł rocznie sfinansowane zmniejszeniem wydat- ków państwa, czy też 15% ulga inwestycyjna? Dlaczego?

84 83 Test (Plusami i minusami zaznacz prawdziwe i fałszywe odpowiedzi) 1. W gospodarce, o której jest ten rozdział, tylko prywatne firmy wydają pieniądze na: A. Inwestycje w rozbudowę infrastuktury gospodarczej (np. auto- strady, lotniska). B. Inwestycje mieszkaniowe. C. Zmianę stanu zapasów. D. Inwestycje w „kapitał ludzki”. 2. Inwestycje zwiększą się na skutek tych zdarzeń (ceteris paribus): A. Wdrożenie w firmach sytemu zaopatrzenia just-in-time. B. Właśnie dorosło pokolenie powojennego wyżu demokraficznego. C. Nieoczekiwane zmniejszenie się zagregowanego popytu zapo- czątkowało recesję. D. Wzrost podaży pieniądza wywołał spadek realnej stopy procen- towej.

85 84 3. Zapewne inwestycje zmniejszą się na skutek następujących zdarzeń (ceteris paribus): A. Obniżka CIT-u. B. Podwyżka ulg inwestycyjnych. C. Przestraszone bessą na rynku nieruchomości banki „limitują kredyt”. D. Przy niezmienionej nominalnej stopie procentowej oczekiwania inflacyjne zmniejszyły się o połowę. 4. Firmy trzymają zapasy, ponieważ: A. Ułatwia to szybkie zaspokajanie zmiennego popytu. B. Zmniejsza to koszty transakcyjne. C. Wymaga tego „wygładzenie” produkcji. D. Bywa to spowodowane innymi jeszcze cechami technologii pro- dukcji.

86 85 5. W trakcie cyklu koniunkturalnego procyklicznie (tak jak produk- cja, Y) zachowują się: A. Zapasy. B. Inwestycje firm w kapitał trwały. C. Konsumpcja. D. Inwestycje mieszkaniowe.


Pobierz ppt "1 Witam Państwa na wykładzie z MAKROEKONOMII II, :)…"

Podobne prezentacje


Reklamy Google