Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Metody matematyczne w Inżynierii Chemicznej Rozwiązywanie równań różniczkowych.

Podobne prezentacje


Prezentacja na temat: "Metody matematyczne w Inżynierii Chemicznej Rozwiązywanie równań różniczkowych."— Zapis prezentacji:

1 Metody matematyczne w Inżynierii Chemicznej Rozwiązywanie równań różniczkowych

2 Metody klasy Rungego-Kutty

3 Zalety metod klasy Rungego-Kutty Brak konieczności stosowania dodatkowych algorytmów do obliczenia punktów początkowych Możliwość zmiany kroku w trakcie obliczeń

4 Zasada metod klasy Rungego-Kutty Metody klasy R-K polegają na podzieleniu odcinka h na N części i wykorzystaniu tylko pochodnych 1-go rzędu z zachowaniem założonej dokładności. Bezpośrednie zastosowanie rozwinięcia wymaga użycia trudnych do obliczenia pochodnych wyższych rzędów

5 Zasada metod klasy Rungego-Kutty Przyrost k aproksymuje się wyrażeniem liniowym o budowie zależnej od rzędu metody R-K Dla metody drugiego rzędu wyrażenie to ma postać: w którym: a, b, m, n Parametry: a, b, m, n to stałe tak dobrane by błąd aproksymacji k przez K miał rząd 3 Składniki równania na K należy rozwinąć w szereg Taylora z 1 pochodną wokół punktu F(x 0,y 0 )

6 Zasada metod klasy Rungego-Kutty F(x 0,y 0 ) to środek rozwinięcia, możliwe jest tylko rozwiniecie k 2 : I ostatecznie do wzoru na K Po podstawieniu do wzoru na k 2 :

7 Zasada metod klasy Rungego-Kutty Ponieważ: a, b, n, m Aby wyznaczyć parametry a, b, n, m trzeba porównać z rozwinięciem k

8 Zasada metod klasy Rungego-Kutty Można dowolnie przyjąć 1 wartość Przyjmijmy m=1 otrzymamy: b = ½ a= ½ n = 1

9 Zasada metod klasy Rungego-Kutty Ogólnie:

10 Metoda Rungego-Kutty rzędu 4-tego (Rungego-Simpsona)

11 Zastosowanie metody Rungego- Kutty do rr. wyższego rzędu.

12 Wektor wartości w kroku i -tym

13 Zastosowanie metody Rungego- Kutty do rr. wyższego rzędu. Funkcja wektorowa (prawe strony równań)

14 Zastosowanie metody Rungego- Kutty do rr. wyższego rzędu. Wektory współczynników

15 Zastosowanie metody Rungego- Kutty do rr. drugiego rzędu. Podstawmy

16 Zastosowanie metody Rungego- Kutty do rr. drugiego rzędu. Funkcja wektorowa: i-ty wektor wartości

17 Zastosowanie metody Rungego- Kutty do rr. drugiego rzędu. Wektory współczynników:

18 Zastosowanie metody Rungego- Kutty do rr. drugiego rzędu. Wektory współczynników:

19 Zastosowanie metody Rungego- Kutty do rr. drugiego rzędu.

20 Metoda Rungego-Kutty algorytm 1.Czytaj punkt startowy x 0, y 0, x k i ilość podziałów n 2.h=(x k - x 0 )/n. 3.Przyjmij i=0 4.Oblicz k 1 =hF(x i,y i ), k 2 =hF(x i +1/2h,y i +1/2k 1 ), k 3 =hF(x i +1/2h,y i +1/2k 2 ), k 4 =hF(x i +h,y i +k 3 ) 5.Oblicz K=1/6(k 1 +2(k 2 +k 3 )+k 4 ) 6.Oblicz y i+1 =y i +K 7.x i+1 = x i +h 8.Zwiększ i o 1 9.Jeżeli i


Pobierz ppt "Metody matematyczne w Inżynierii Chemicznej Rozwiązywanie równań różniczkowych."

Podobne prezentacje


Reklamy Google