Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1 Wnioskowanie Mamdani’ego.

Podobne prezentacje


Prezentacja na temat: "Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1 Wnioskowanie Mamdani’ego."— Zapis prezentacji:

1 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1 Wnioskowanie Mamdani’ego 1. Oblicz stopień spełnienia przesłanki każdej z reguł przez dane wejście: 2. Oblicz zbiory rozmyte wyjścia każdej z reguł dla danego wejścia : 3. Zagreguj zbiory rozmyte wyjścia uzyskując odpowiedź systemu:

2 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania2 Wnioskowanie Mamdani’ego – czysty system rozmyty -ilustracja

3 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania3 Przykład – model lingwistyczny spalania gazu przy stałym natężeniu dopływu gazu (system SISO) Mieliśmy: Zbiory rozmyte wejścia Zbiory rozmyte wyjścia Baza reguł: Zbiór rozmyty wejścia - Somewhat Low (raczej niskie)

4 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania4 Procedura wnioskowania Mamdani’ego 1. Obliczenie stopnia spełnienia przesłanek Wybieramy t-normę MIN dla obliczania stopnie spełnienia przesłanek

5 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania5 2. Obliczenie zbiorów rozmytych wyjścia: Wybieramy t-normę MIN dla obliczania zbiorów rozmytych wyjścia każdej z reguł

6 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania6 3. Zagregowanie zbiorów rozmytych wyjścia: Max

7 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania7 Wyostrzanie - defuzyfikacja Defuzyfikacja zbioru rozmytego B’(y) (całościowej wynikowej funkcji przynależności zbioru reguł i faktu) to operacja określenia „ostrej” wartości y’ reprezentującej ten zbiór (w sposób jak najbardziej sensowny) Najbardziej znane metody defuzyfikacji:  metoda środka maksimum (SM) – Middle of Max (MOM), Mean of Maxima (MOM)  metoda pierwszego maksimum (PM) – Smallest of Max (SOM),  metoda ostatniego maksimum (OM) – Largest of Max (LOM)  metoda środka ciężkości (SC) - Centroid of Area (COA), Center of Gravity (COG)  metoda środka sum (SS) - Bisector of Area (BOA)

8 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania8 Wyostrzanie - defuzyfikacja

9 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania9 Metoda środka ciężkości (SC) za ostrego reprezentanta y’ wynikowego zbioru rozmytego konkluzji B’ zdefiniowanego funkcją przynależności przyjmuje współrzędną y środka ciężkości powierzchni pod krzywą określoną tą funkcją Metoda środka ciężkości (SC) - Centroid of Area (COA), Center of Gravity (COG)

10 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania10 Metoda środka maksimum (SM) - Middle of Max (MOM) Metoda środka maksimum (SM) za ostrego reprezentanta y’ wynikowego zbioru rozmytego konkluzji B’ zdefiniowanego funkcją przynależności przyjmuje współrzędną y będącą wartością średnią wyjść dla których wynikowa funkcja przynależności osiąga maksimum

11 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania11 Przypomnienie - wnioskowanie Mamdani’ego: przypadek SISO 1. Oblicz stopień spełnienia przesłanki każdej z reguł: 2. Oblicz zbiory rozmyte wyjścia każdej z reguł: 3. Zagreguj zbiory rozmyte wyjścia: Rozważana pojedyncza reguła ma postać a wejście systemu pytamy o wyjście systemu } Wymaga modyfikacji ! } Nie wymaga modyfikacji

12 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania12 Jedna reguła – dwie przesłanki Fakt: x 1 = A 1 ’ i x 2 = A 2 ’ Implikacja JEŚLI x 1 = A 1 I x 2 = A 2 TO y = B Wnioseky = B’

13 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania13 Rozwijając definicję wnioskowania rozmytego otrzymamy: Modyfikacja kroku 1.

14 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania14 Dwie reguły – dwie przesłanki Fakt: x 1 = A 1 ’ i x 2 = A 2 ’ Implikacja 1 JEŚLI x 1 = A 11 I x 2 = A 12 TO y = B 1 Wnioseky = B’ Implikacja 2 JEŚLI x 1 = A 21 I x 2 = A 22 TO y = B 2

15 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania15 Modyfikacja kroku 1. dowolna s-norma (t-konorma)

16 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania16

17 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania17

18 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania18

19 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania19

20 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania20

21 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania21

22 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania22

23 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania23

24 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania24 Agregacja odpowiedzi cząstkowych (s-norma MAX)

25 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania25 Wyostrzenie – poszukiwanie odpowiedzi ostrej Skorzystanie ze znajomości obliczania współrzędnych środka ciężkości figur elementarnych

26 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania26

27 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania27

28 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania28

29 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania29 Odpowiedź ostra

30 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania30 Modele rozmyte mogą być użyte do modelowania obiektu sterowanego i sterownika (regulatora) Przykład Chcemy zbudować prosty regulator siły ciągu odkurzacza Przyjmujemy początkowo, że regulator powinien określać siłę ciągu w zależności od stopnia zakurzenia powierzchni odkurzanej – regulator: jedno wejście - Surface i jedno wyjście - Force Ustalamy wartości lingwistyczne wejścia: Very Dirty, Dirty, Rather Dirty, Almost Clean, Clean Ustalamy wartości lingwistyczne wyjścia: Very Strong, Strong, Ordinary, Weak, Very Weak

31 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania31 Proponujemy tablicę reguł regulatora: S(urface) F(orce) V(ery) D(irty) V(ery) S(trong) D S RD O AC W C VW Krok następny: zdefiniowanie funkcji przynależności wartości wejścia i wyjścia – zadanie do samodzielnego rozwiązania Pięć reguł Wejście: 1, wartości 5 Wyjście: 1, wartości 5

32 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania32 Modyfikacja regulatora: wprowadzenie drugiego wejścia – Surface Type Ustalamy wartości lingwistyczne drugiego wejścia: Wood, Tatami, Carpet Proponujemy tablicę reguł regulatora: Krok następny: zdefiniowanie funkcji przynależności wartości wejścia i wyjścia – zadanie do samodzielnego rozwiązania S ST C AC RD D VD Wo Ta Ca VW W OS W O S VS WO O S Piętnaście reguł Wejście: 2, wartości 1.: 5, wartości 2.: 3 Wyjście: 1, wartości 5 F

33 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania33 Przykład Chcemy zbudować regulator rozmyty stabilizujący prędkość samochodu Przyjmujemy, że regulator powinien określać siłę ciągu w zależności od uchybu prędkości i przyśpieszenia Pożądana prędkość: v 0 = const Wejścia regulatora: Uchyb prędkości Prędkość pożądana Prędkość aktualna Przyśpieszenie Wyjście regulatora: Siła ciągu

34 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania34 Struktura układu sterowania Prototypowanie układu sterowania w środowisku MATLAB/Siomulink

35 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania35 Ustalamy wartości lingwistyczne wejścia Velocity Error (VE): Negative Error (NE), Zero Error (ZE), Positive Error (PE) Ustalamy wartości lingwistyczne wejścia Acceleration (A): Negative Acceleration (NA), Zero Acceleration (ZA), Positive Acceleration (PA) Definiujemy funkcje przynależności ustalonych wartości wejść

36 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania36 Ustalamy wartości lingwistyczne wyjścia Engine Force: Minimum (Min), Normal, Maximum (Max) Definiujemy funkcje przynależności ustalonych wartości wyjścia

37 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania37 Konstruujemy tablicę reguł (model) regulatora rozmytego Powierzchnia odpowiedzi regulatora rozmytego Dziewięć reguł Wejście: 2, wartości 1.: 3, wartości 2.: 3 Wyjście: 1, wartości 3

38 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania38 Wyniki testowe prototypu regulatora rozmytego

39 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania39 Przykład: sterowanie rozmyte z wykorzystaniem systemu Mamdani’ego System rozmyty Mamdani’ego może być użyty do budowy sterownika opartego na wiedzy użytkownika (eksperta) – jak sterować obiektem Jeżeli zadania sterowania polega na śledzeniu trajektorii zadanej struktura systemu sterowania zwykle ma postać Sterownik rozmyty Obiekt

40 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania40 Wstępny projekt sterownika rozmytego: obiekt - belka i kulka Belka Kulka Silnik - napęd Belka Kulka Wiedza o obiekcie - położenie kulki na belce ( rozumiane jest jako środek belki) - położenie kątowe belki ( rozumiane jest jako położenie poziome) Wejście sterujące (manipulacyjne) do obiektu belka – kulka: napięcie zasilania silnika p.s. Położenie kątowe belki jest proporcjonalne do napięcia zasilania silnika, czyli

41 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania41 Zadanie sterowania Kształtować napięcie w taki sposób, aby położenie kulki śledziło sygnał wartości zadanej Jeżeli to zadanie, uszczegóławia się do postaci, utrzymać kulkę nieruchomo w środku belki, to trajektoria zadana i wówczas Realizacja zadania sterowania Załóżmy, że ekspert zdecydował, że cel sterowania może być osiągnięty korzystając z wiedzy o położeniu i prędkości kulki Struktura sterownika rozmytego Sterownik rozmyty

42 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania42 Wartości (zbiory rozmyte) wejścia sterownika

43 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania43 Wartości (zbiory rozmyte) wejścia sterownika

44 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania44 Wartości (zbiory rozmyte) wyjścia sterownika

45 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania45 Dlaczego takie dziedziny rozważań? wartości rozmyte? Kształty, zakresy ….. Błąd położenia - Długość belki 1 m Zmiana błędu – oszacowanie prędkości kulki po puszczeniu jej swobodnie z położenia stacjonarnego i przebyciu określonego odcinka; kraniec belki, belka pionowa, 1m – prędkość 4.4m/s Napięcie zasilania – singleton – dogodność przy wyostrzaniu

46 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania46 Silnik - napęd Błąd położenia - - ujemny duży (NL) Zmiana błędu położenia - - ujemny duży (NL) Błąd położenia - - ujemny duży (NL) Zmiana błędu położenia - - dodatni duży (PL) Tworzenie bazy reguł

47 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania47 Silnik - napęd Błąd położenia - - ujemny zerowy (Z) Zmiana błędu położenia - - ujemna mała (NS)

48 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania48

49 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania49 Macierz reguł Tablica reguł

50 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania50 Wnioskowanie – uproszczone Mamdani’ego, t – norma PROD Np. Reguła 1 – stopień spełnienia przesłanki reguły Np. niech w danej chwili t:

51 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania51 Dalsze niezerowe stopnie spełnienia przesłanek:

52 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania52 Odpowiedzi cząstkowe: Reguła 9: Reguła 10:

53 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania53 Odpowiedzi cząstkowe: Reguła 14: Reguła 15:

54 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania54 Odpowiedź całkowita: Wyostrzanie – metoda środka ciężkości (COG)

55 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania55 Wyniki symulacji: Czas t (s) Położenie kulki (m) Dla eksperymentu symulacyjnego:

56 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania56 Strojenie dla poprawy jakości działania przez strojenie skalowalnych wzmocnień (wag) Sterownik rozmyty Belka i kulka Układ sterowania Nowa struktura sterownika Statyczny sterownik rozmyty

57 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania57 Czas t (s) Położenie kulki (m)

58 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania58 Czas t (s) Położenie kulki (m)

59 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania59 Czas t (s) Położenie kulki (m)

60 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania60 Czas t (s) Położenie kątowe belki (rad) Położenie kulki (m)

61 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania61 Wpływ kształtu funkcji przynależności Zastosujemy funkcję Gaussa Wartości (zbiory rozmyte) wejścia sterownika

62 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania62 Wartości (zbiory rozmyte) wejścia sterownika

63 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania63 Wnioskowanie – uproszczone Mamdani’ego, t – norma PROD

64 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania64 Próg „odpalenia” reguły: 0.1 Stopień spełnienia przesłanek reguł: Ostre wyjście sterownika

65 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania65 Charakterystyki wejście – wyjście badanych sterowników

66 Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania66 Dziękuję za uczestnictwo w wykładzie i uwagę Koniec materiału prezentowanego podczas wykładu


Pobierz ppt "Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1 Wnioskowanie Mamdani’ego."

Podobne prezentacje


Reklamy Google