Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Równowaga sił w układzie mięśniowo szkieletowym człowieka w warunkach statyki Warszawa, 8 października 2008.

Podobne prezentacje


Prezentacja na temat: "Równowaga sił w układzie mięśniowo szkieletowym człowieka w warunkach statyki Warszawa, 8 października 2008."— Zapis prezentacji:

1 Równowaga sił w układzie mięśniowo szkieletowym człowieka w warunkach statyki Warszawa, 8 października 2008

2 Mechanika 1) Dział fizyki zajmujący się badaniem równowagi, ruchu i oddziaływania ciał Siły są miarą oddziaływania ciał 1N jest to siła, która działając na ciało o masie 1kg nadaje mu przyspieszenie 1 m/s 2 2) Nauka o budowie, działaniu i konstruowaniu maszyn oraz mechanizmów

3 Mechanika Z gr. Mechaniké sztuka budowania maszyn od mechané maszyna M. klasyczna – mechanika oparta na teorii Newtona, badająca ruch makroskopowych ciał materialnych M. relatywistyczna – mechanika uwzględniająca w swoich badaniach elementy wynikające z teorii względności M. kwantowa M. płynów M. nieba – dział astronomii badający ruch ciał niebieskich M. techniczna dział nauki zajmujący się konstruowaniem i budowaniem maszyn, mechanizmów, aparatów

4 Prekursorzy Mechanika jako nauka ścisła powstała w Egipcie w IV w p.n.e. Arystoteles ( p.n.e.), Archytas z Tarentu – maszyny proste Archimedes ( p.n.e.) siły równoległe teoria dźwigni Mikołaj Kopernik ( ) układy odniesienia Isaak Newton ( ) Philosophiae naturalis principia mathematica. 1687, Londyn – podstawy mechaniki klasycznej opartej na faktach doświadczalnych, prawa powszechnego ciążenia i klasycznej dynamiki

5 Mechanika Techniczna Mechanika techniczna: »Mechanika ogólna (teoretyczna) »Wytrzymałość Mechanika ogólna zajmuje się ustalaniem ogólnych praw ruchu i równowagi ciał materialnych oraz zastosowaniem tych praw do pewnych wyidealizowanych schematów ciał materialnych: punktu materialnego, ciała doskonale sztywnego.

6 Mechanika ogólna Mechanika ogólna dzieli się na: –Kinematykę (badanie ruchu bez wnikania w jego przyczyny, bez uwzględniania działających sił) –Dynamikę (badanie działających sił), która dzieli się na: Statykę: zajmuje się badaniem równowagi sił Kinetykę: bada ruch ciał oraz siły wywołujące go

7 Kinematyka a – stałe przyspieszenie V(t) = v 0 + at X(t) = x 0 + v 0 t + ½at 2

8 II zasada dynamiki Newtona

9 Zmiana pędu Π = Δp Popęd siły = Przyrost pędu Popęd siły to pole pod krzywą siły zmieniającej się w czasie (całka) Pęd = mv

10 Zasady statyki (aksjomaty) Zasada równoległoboku: Działanie dwóch sił F 1 i F 2 można zastąpić działaniem jednej siły R Jeżeli do ciała przyłożone są dwie siły to równoważą się one tylko wtedy, gdy mają tę samą linię działania, te same wartości i przeciwne zwroty Skutek działania dowolnego układu sił przyłożonego do ciała nie zmieni się jeżeli dodamy lub odejmiemy dowolny układ sił równoważących się (układ zerowy) Jeżeli ciało odkształcalne znajduje się w równowadze pod działaniem pewnego układu sił, to również pozostanie w równowadze ciało doskonale sztywne (nieodkształcalne) identyczne z poprzednim, pod działaniem tego samego układu sił. Każdemu działaniu towarzyszy równe co do wartości o przeciwnym zwrocie i leżące na tej samej prostej przeciwdziałanie. Każde ciało nieswobodne można myślowo oswobodzić z więzów, zastępując ich działanie reakcjami, a następnie rozpatrywać jako ciało swobodne, znajdujące się pod działaniem sił czynnych i biernych

11 Ruch Ruch – wzajemne przemieszczanie się w przestrzeni, w miarę upływu czasu jednych ciał względem innych Ruch jest względny Układ współrzędnych związany z ciałem lub zbiorem ciał, względem których opisujemy ruch innego ciała nazywamy układem odniesienia

12 Modele, pojęcia podstawowe Opisując zjawiska fizyczne posługujemy się modelami: Punkt materialny – ciało którego wymiary można pominąć w opisie ruchu Bryła sztywna – zbiór wielkiej liczby punktów materialnych znajdujących się w stałej niezmiennej odległości Tor ruchu – linia krzywa lub prosta po której odbywa się ruch Droga s – długość toru (skalar) Δr – przemieszczenie (wektor) W postaci wektorowej kinematyczne równanie ruchu jest zależnością określającą wektor położenia ciała jako funkcję czasu r = r(t); r = xi + yi + zj Eliminując czas otrzymujemy równanie toru

13 Siła bezwładności B = - am Siły B są wywołane przyspieszeniem układu odniesienia a nie oddziaływaniem między ciałami Siły B działają na ciała tylko w nieinercjalnych układach odniesienia Siły B zależą od masy, zawsze przeciwne do przyspieszenia nieinercjalnego układu odniesienia Dla dowolnego układu ciał w nieinercjalnym układzie odniesienia Siły B są siłami zewnętrznymi dlatego nie są zachowane w tych układach zasada zachowania energii i pędu

14 Moment siły Momentem siły F względem punktu 0 nazywamy odłożony z punktu 0 wektor M 0 równy iloczynowi wektorowemu promienia wektora r i wektora siły F ; M 0 = r×F y y x z 0 F r M0M0

15 Moment siły r F B A l M0M0 0 M 0 = Frsinα = Fl α l – ramię działania siły

16 Redukcja dowolnego przestrzennego układu sił Załóżmy, że na ciało sztywne działa dowolny przestrzenny układ n sił F i przyłożonych w różnych punktach przestrzenia. Aby ten układ zredukować przyjmujemy dowolny punkt 0 zwany środkiem redukcji układu sił Korzystając z równoległego przesunięcia otrzymujemy układ sił zbieżnych przyłożonych do punktu 0 oraz n par sił o momentach M i0 Układ sił zbieżnych zastępujemy:

17 Równowaga przestrzennego układu sił Przestrzenny układ n sił jest w równowadze, jeżeli jego suma geometryczna R jest równa zeru oraz moment M 0 od tych sił względem dowolnego punktu 0 jest równy zero

18 Równowaga przestrzennego układu sił Dowolny przestrzenny układ sił F i jest w równowadze, jeżeli suma rzutów wszystkich sił na trzy osie układu równa jest zeru i suma momentów sił względem trzech osi układu jest równa zeru

19 Równowaga płaskiego układu sił Płaski dowolny układ sił znajduje się w równowadze, jeżeli sumy rzutów wszystkich sił na osie układu są równe zeru i moment wszystkich sił względem dowolnego punktu płaszczyzny działania sił jest równy zeru

20 Środek masy (Środek ciężkości) Środek masy dwóch punktów materialnych mAmA mBmB a b m A a = m B b

21 Dźwignie Dźwignia jest to sztywna belka, mogąca obracać się dookoła osi 0 0 Belka jest w równowadze jeżeli suma momentów sił względem punktu 0 jest równa 0: F1F1 FnFn

22 Dźwignie 0 0 P Q a b P Q Dźwignia jednostronnaDźwignia dwustronna Pa – Qb = 0; czyli Pa = Qb Jeżeli P jest siłą z jaką działamy, a Q siła którą pokonujemy to zysk mechaniczny Z: ab


Pobierz ppt "Równowaga sił w układzie mięśniowo szkieletowym człowieka w warunkach statyki Warszawa, 8 października 2008."

Podobne prezentacje


Reklamy Google