Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

PITAGORAS ARCHIMEDES GALILEUSZ TALES PIERRE de FERMAT LEONARD EULER JOSEPH LOUIS LAGRANGE MIKOŁAJ KOPERNIK BANACH.

Podobne prezentacje


Prezentacja na temat: "PITAGORAS ARCHIMEDES GALILEUSZ TALES PIERRE de FERMAT LEONARD EULER JOSEPH LOUIS LAGRANGE MIKOŁAJ KOPERNIK BANACH."— Zapis prezentacji:

1

2 PITAGORAS ARCHIMEDES GALILEUSZ TALES PIERRE de FERMAT LEONARD EULER JOSEPH LOUIS LAGRANGE MIKOŁAJ KOPERNIK BANACH

3 Nie mamy pewności co do jego istnienia jednak powszechnie przyjmuje się, że urodził się on na Samos jako syn kupca. Żył ponoć w Atenach w czasach Polikratesa, stamtąd uciekł do Krotony w Wielkiej Grecji, gdzie założył swoją szkołę o charakterze filozoficzno-religijnym.

4 Pitagoras przekazywał swe nauki w postaci maksym, z których część jest dziś dla nas zupełnie niezrozumiała, ze względu na nieznajomość kontekstu kulturowego, a część zachowuje swą aktualność do dziś. Przykłady maksym: Wagi nie przechylać. Własnego serca nie zjadać. Zbyt chętnie nie podawać prawicy. Pamięć ćwiczyć. W gniewie nic nie mówić i nie czynić. Maksymy Pitagorasa

5 Twierdzenie Pitagorasa Pentagram Krąg pitagorejski Pitagorejczycy Z czego zasłynął Pitagoras?

6 W dowolnym trójkącie prostokątnym, suma pól kwadratów zbudowanych na przyprostokątnych trójkąta prostokątnego równa jest polu kwadratu zbudowanego na przeciwprostokątnej tego trójkąta. lub W trójkącie prostokątnym suma kwadratów długości przyprostokątnych jest równa kwadratowi długości przeciwprostokątnej tego trójkąta. a 2 + b 2 = c 2 Twierdzenie Pitagorasa

7 Prawdopodobnie twierdzenie to nie zostało stworzone przez samego Pitagorasa a przez jego przedstawicieli szkoły Pitagorejskiej ???

8 Jest to pięciokąt prawidłowy, którego boki przedłużone w obie strony tworzy pięciokąt gwiaździsty, Tym znakiem pitagorejczycy rozpoznawali się i pozdrawiali, Własności: Suma katów pentagramu równa się 180°; w punktach skrzyżowania promieni znajduje się złote cięcie. Gwiazda pitagorejska (pentagram)

9 Pentagram

10 Jeśli wzdłuż okręgu koła napiszemy ciąg liczb naturalnych od 1 do n, a następnie od n do 1, to suma wszystkich tych liczb będzie równa n². Krąg pitagorejski

11 Pitagorejczycy to wyznawcy doktryny rozwiniętej przez Pitagorasa i jego następców w szkole religijno- filozoficzno - naukowej, którą założył Pitagoras w Krotonie w Wielkiej Grecji. Wnieśli ogromny wkład do nauki, zwłaszcza w zakresie matematyki, astronomii oraz teorii muzyki. Poglądy pitagorejczyków w istotny sposób stanowiły inspirację filozofii Platona; platonizm i pitagoreizm często był później łączony. Fani Pitagorasa czyli PITAGOREJCZYCY

12 Wybitny grecki fizyk i matematyk, urodzony i zmarły w Syrakuzach, wykształcenie zdobył w Aleksandrii..

13 autor traktatu o kwadraturze odcinka paraboli twórca hydrostatyki i statyki prekursor rachunku nieskończonościowego (infinitezymalnego) stworzył podstawy rachunku różniczkowego w dziele Elementy mechaniki wyłożył podstawy mechaniki teoretycznej zajmował się również astronomią – zbudował globus i planetarium od jego imienia jedną ze spiral nazwano spiralą Archimedesa

14 Na ciało zanurzone w płynie działa pionowa, skierowana ku górze siła wyporu. Wartość siły jest równa ciężarowi wypartej cieczy (gazu). Siła jest przyłożona w środku ciężkości wypartej cieczy (gazu).

15 Według niego każdy odcinek jest krótszy od pewnej wielokrotności długości każdego innego odcinka. Z niego wynika nieograniczoność prostej. Mówiąc inaczej dla każdej pary dodatnich liczb rzeczywistych a i b istnieje taka liczba naturalna n, że a < n · b Wartość liczby PI według ARCHIMEDESA Jako pierwszy podał przybliżoną wartość liczby pi 33, Według niego 3,14< π < 3,17

16 O liczeniu piasku – o wielkich liczbach i o nieskończoności O kuli i walcu – wyprowadza wzory na powierzchnię i objętość kuli, walca i czaszy kulistej O konoidach i sferoidach – o krzywych stożkowych O ciałach pływających – definicja praw hydrostatyki i aerostatyki Elementy mechaniki – podstawy mechaniki teoretycznej

17 Przenośnik ślimakowy Organy wodne Machiny obronne Udoskonalony wielokrążek

18 Włoski matematyk, astronom, fizyk i filozof, twórca podstaw nowożytnej fizyki. Rozpoczął studia na Uniwersytecie w Pizie. W roku 1589 został wykładowcą matematyki na tym uniwersytecie. Następnie przeniósł się na Uniwersytet w Padwie, gdzie do roku 1610 wykładał geometrię, mechanikę i astronomię.

19 , Galileusz udoskonalił tzw. "kompas geometryczny i wojskowy" Około roku , Galileusz skonstruował termometr. W 1609 r. Galileusz był jednym z pierwszych, którzy używali teleskopu do obserwacji gwiazd, planet i księżyca. W 1610 r. wykorzystując części teleskopu skonstruował ulepszony mikroskop. 7 stycznia odkrył księżyce Jowisza - Io, Europa, Kallisto 11 stycznia 1610 odkrył kolejny księżyc Jowisza – Ganimedesa. Wynalazki GALILEUSZA

20 Filozof i matematyk; prawdopodob nie pierwszy uczony i filozof w Europie.

21 podanie tzw. twierdzenia Talesa przewidzenie zaćmienia Słońca na 585 r. p.n.e. zmierzenie wysokości piramid za pomocą cienia (na podstawie podobieństwa trójkątów) wykazanie, że średnica dzieli okrąg na połowy podanie twierdzenia o równości kątów przy podstawie trójkąta równoramiennego twierdzenia o równości 2 trójkątów mających równe 1 bok i 2 kąty

22 Jeżeli ramiona kąta przeci ę te s ą prostymi równoległymi, to stosunki długo ś ci odcinków wyznaczonych przez te proste na jednym ramieniu k ą ta, s ą równe stosunkom długo ś ci odpowiednich odcinków na drugim ramieniu k ą ta.

23 Matematyk (samouk) francuski, z wykształcenia prawnik lingwista, od 1631 radca parlamentu w Tuluzie. Większość jego prac matematycznych została opublikowana dopiero po jego śmierci przez syna, Samuela

24 sformułował słynne wielkie twierdzenie Fermata przed Kartezjuszem opracował i stosował metodę współrzędnych w geometrii wykazał, że wszystkie krzywe drugiego stopnia da się uzyskać przez odpowiednie przecinanie płaszczyzną powierzchni stożka podał metodę znajdowania ekstremum funkcji jego prace stworzyły też podstawy pod późniejszy rozwój rachunku prawdopodobieństwa

25 Szwajcarski matematyk i fizyk; był pionierem w wielu obszarach obu tych nauk. Większą część życia spędził w Rosji i Prusach. Jest uważany za jednego z najbardziej produktywnych matematyków w historii.

26 dokonał licznych odkryć w tak różnych gałęziach matematyki jak rachunek różniczkowy i całkowy oraz teoria grafów wniósł duży wkład w rozwój terminologii i notacji matematycznej, szczególnie trwały w dziedzinie analizy matematycznej jako pierwszy w historii użył na przykład pojęcia i oznaczenia funkcji opublikował wiele ważnych prac z zakresu mechaniki, optyki i astronomii

27 Matematyk i astronom włoskiego pochodzenia, ale pracujący we Francji i przez dwadzieścia lat w Berlinie dla króla pruskiego Fryderyka II

28 zajmował się między innymi teorią rozchodzenia się dźwięku i zauważył błąd w wyjaśnieniu tego zjawiska dokonanym przez Newtona podał ogólne równanie różniczkowe opisujące rozchodzenie się fali dźwiękowej i rozwiązał je w przypadku jednowymiarowym rozwiązał w ogólnym przypadku zagadnienie drgań poprzecznych struny opisał zjawisko echa, odbicia i interferencji fal dźwiękowych

29 Był wybitnym polihistorem Renesansu, zajmował się między innymi astronomią, matematyką, prawem, ekonomią, strategią wojskową, astrologią, był także lekarzem oraz tłumaczem

30 polski astronom, autor dzieła De revolutionibus orbium coelestium przedstawiającego szczegółowo i w naukowo użytecznej formie heliocentryczną wizję Wszechświata. Wprawdzie koncepcja heliocentryzmu pojawiła się już w starożytnej Grecji (jej twórcą był Arystarch z Samos), to jednak dopiero dzieło Kopernika dokonało przełomu i wywołało jedną z najważniejszych rewolucji naukowych od czasów starożytnych, nazywaną przewrotem kopernikańskim.

31 w dziedzinie astronomii - rozpowszechnienie teorii heliocentrycznej, pierwszy raz sformułowanej przez Arystarcha z Samos w dziedzinie ekonomii - sformułowanie prawa Kopernika-Greshama w geometrii - sformułowanie twierdzenia Kopernika

32 Jeśli wewnątrz dużego okręgu toczy się bez poślizgu okrąg o promieniu dwa razy mniejszym, to dowolny, lecz ustalony punkt małego okręgu porusza się prostoliniowo po średnicy dużego.

33 polski matematyk, jeden z przedstawicieli lwowskiej szkoły matematycznej, od dzieciństwa wykazywał nieprzeciętne zdolności matematyczne i lingwistyczne

34 podał pierwszą aksjomatyczną definicję przestrzeni, nazwanych później jego imieniem (przestrzeń Banacha), które sam określił jako przestrzenie typu B Ugruntował ostatecznie podstawy niesłychanie ważnej w nowoczesnych zastosowaniach matematyki analizy funkcjonalnej jego prace dotyczyły szeregów Fouriera funkcji i szeregów ortogonalnych równań Maxwella funkcji pochodnych funkcji mierzalnych teorii miary

35 Polskie Towarzystwo Matematyczne ufundowało nagrodę naukową im. Banacha w 1992 – w stulecie urodzin Stefana Banacha – ustanowiono Medal im. Stefana Banacha za wybitne zasługi w dziedzinie nauk matematycznych 3 kwietnia 2012 Narodowy Bank Polski upamiętnił Stefana Banacha na złotej monecie 200 zł, srebrnej 10 zł i 2 zł ze stopu Nordic Gold

36 Był profesorem Politechniki Warszawskiej i Uniwersytetu Jagiellońskiego. Członek Towarzystwa Naukowego Warszawskiego od 1931, w 1919 był jednym z założycieli Polskiego Towarzystwa Matematycznego, później jego przewodniczącym ( ). Jego prace dotyczyły teorii grup i funkcji analitycznych. Pisał także podręczniki akademickie.

37 Opracowali: Karol Tokarz Tomasz Niemiec Łukasz Pasternak Waldemar Filip


Pobierz ppt "PITAGORAS ARCHIMEDES GALILEUSZ TALES PIERRE de FERMAT LEONARD EULER JOSEPH LOUIS LAGRANGE MIKOŁAJ KOPERNIK BANACH."

Podobne prezentacje


Reklamy Google