Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

STYCZNA DO KRZYWEJ W DANYM PUNKCIE Opracowała Dorota Malicka.

Podobne prezentacje


Prezentacja na temat: "STYCZNA DO KRZYWEJ W DANYM PUNKCIE Opracowała Dorota Malicka."— Zapis prezentacji:

1

2 STYCZNA DO KRZYWEJ W DANYM PUNKCIE Opracowała Dorota Malicka

3 MENU Pochodna funkcji w punkcie - przypomnienie Wstęp do animacji Interpretacja geometryczna pochodnej - animacja Wnioski Definicja stycznej

4 Pochodna funkcji w punkcie - przypomnienie. Pochodna funkcji w punkcie to granica właściwa ilorazu różnicowego gdy h dąży do zera.

5 Iloraz różnicowy funkcji można geometrycznie interpretować jako tangens kąta nachylenia odpowiedniej siecznej do osi x.

6 A jak interpretować pochodną funkcji w punkcie?

7 Kliknij, aby zobaczyć animację.

8 y=f(x)

9

10

11

12 Menu

13 y=f(x) styczna ) Menu

14 Interpretacja geometryczna pochodnej. Pochodną funkcji f w punkcie można interpretować jako tangens kąta nachylenia stycznej do wykresu funkcji f, poprowadzonej przez punkt. styczna y=f(x) Menu Kliknij, aby obejrzeć animację powtórnie.

15 Definicja stycznej. Jeśli funkcja f jest określona w pewnym otoczeniu punktu i jest różniczkowalna w tym punkcie, to prostą o równaniu : nazywamy styczną do wykresu funkcji f w punkcie. Menu

16 Koniec Dziękuję za uwagę


Pobierz ppt "STYCZNA DO KRZYWEJ W DANYM PUNKCIE Opracowała Dorota Malicka."

Podobne prezentacje


Reklamy Google