Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Ciągiem nieskończonym nazywamy funkcję, której dziedziną jest zbiór liczb naturalnych dodatnich Ciągiem skończonym k-wyrazowym nazywamy funkcję, której.

Podobne prezentacje


Prezentacja na temat: "Ciągiem nieskończonym nazywamy funkcję, której dziedziną jest zbiór liczb naturalnych dodatnich Ciągiem skończonym k-wyrazowym nazywamy funkcję, której."— Zapis prezentacji:

1

2 Ciągiem nieskończonym nazywamy funkcję, której dziedziną jest zbiór liczb naturalnych dodatnich Ciągiem skończonym k-wyrazowym nazywamy funkcję, której dziedziną jest skończony podzbiór kolejnych liczb naturalnych 1,2,3,…, k. Jeżeli wartości tej funkcji są liczbami, to taki ciąg nazywamy ciągiem liczbowym.

3 W każdym z ciągów kolejne elementy powstają według pewnej ustalonej reguły, np.: itd…

4 Ciągi monotoniczne to ciągi, które są albo rosnące, albo malejące, albo stałe.

5 Ciąg (a n ) nazywamy rosnącym wtedy i tylko wtedy, gdy każdy jego wyraz oprócz pierwszego jest większy od wyrazu go poprzedzającego, czyli gdy każdej dodatniej liczb naturalnej n spełniona jest nie równość: a n1 a n

6 Ciąg (a n ) nazywamy malejącym wtedy i tylko wtedy, gdy każdy jego wyraz oprócz pierwszego jest mniejszy od wyrazu bezpośrednio go poprzedzającego, czyli gdy dla każdej dodatniej liczby naturalnej n spełniona jest nierówność:

7 Ciąg (a n ) nazywamy stałym wtedy i tylko wtedy, gdy każdy jego wyraz oprócz pierwszego jest równy wyrazowi, który go poprzedza, czyli dla każdej dodatniej liczby naturalnej n spełniona jest równość:

8 W celu zbadania monotoniczności ciągu (a n ) wyznaczamy różnicę: a n+1 –a n i badamy jej znak.

9 Ciągiem arytmetycznym nazywamy ciąg, w którym każdy wyraz, oprócz pierwszego, otrzymujemy przez dodanie do wyrazu poprzedniego tej samej liczby r. Oznacza to, że dla każdej dodatniej liczby naturalnej n zachodzi: Liczbę r nazywamy różnicą ciągu arytmetycznego.

10 Ciąg arytmetyczny o różnicy r: 1) jest rosnący, gdy r > 0 2) jest malejący, gdy r < 0 3) jest stały, gdy r = 0 Jeżeli (a n ) ciąg jest ciągiem arytmetycznym o różnicy r, to dla każdej dodatniej liczby naturalnej n zachodzi: Każdy wyraz nieskończonego wyrazu ciągu arytmetycznego (oprócz wyrazu pierwszego) jest średnią arytmetyczną jego dwóch sąsiednich wyrazów (poprzedniego i następnego).

11 Jeżeli ciąg (a n ) jest ciągiem arytmetycznym o różnicy r, to dla każdej dodatniej liczby naturalnej n zachodzi :

12 Niech dany będzie ciąg (a n ) o wyrazach:

13 Symbolem S n oznaczamy n-tą sumę częściową ciągu (a n ), czyli sumę wszystkich wyrazów tego ciągu od wyrazu pierwszego do n-tego włącznie. Zatem:

14 Jeżeli ciąg (a n ) jest ciągiem arytmetycznym, to suma n początkowych jego wyrazów wyraża się wzorem: Jeżeli ciąg (a n ) jest ciągiem arytmetycznym o wyrazie początkowym a 1 i różnicy r, to suma n początkowych jego wyrazów wyraża się wzorem: S n =

15 Ciągiem geometrycznym nazywamy ciąg, w którym każdy wyraz, oprócz pierwszego, powstaje przez pomnożenie wyrazu bezpośrednio go poprzedzającego przez tę samą liczbę q. Oznacza to, że dla każdej dodatniej liczby naturalnej n zachodzi: Liczbę q nazywamy ilorazem ciągu geometrycznego.

16 Ciąg geometryczny o wyrazie początkowym a 1 i ilorazie q jest: 1)naprzemienny, gdy: 2) stały, gdy: 3) rosnący, gdy: 4) malejący, gdy:

17 Jeżeli ciąg (a n ) jest ciągiem geometrycznym o ilorazie q i wyrazach różnych od zera, to dla każdej dodatniej liczby naturalnej n zachodzi:

18 Zatem aby stwierdzić, czy dany ciąg o wyrazach różnych od zera jest geometryczny, należy sprawdzić, czy iloraz jego kolejnych wyrazów jest stały.

19 Jeżeli ciąg (a n ) jest ciągiem geometrycznym o ilorazie q, to dla każdej dodatniej liczby naturalnej n zachodzi:

20 Jeżeli ciąg (a n ) jest ciągiem geometrycznym, to suma n początkowych wyrazów wyraża się wzorem:

21


Pobierz ppt "Ciągiem nieskończonym nazywamy funkcję, której dziedziną jest zbiór liczb naturalnych dodatnich Ciągiem skończonym k-wyrazowym nazywamy funkcję, której."

Podobne prezentacje


Reklamy Google