Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

STATYSTYCZNE STEROWANIE PROCESEM PRODUKCYJNYM On już wie jak to działa.

Podobne prezentacje


Prezentacja na temat: "STATYSTYCZNE STEROWANIE PROCESEM PRODUKCYJNYM On już wie jak to działa."— Zapis prezentacji:

1 STATYSTYCZNE STEROWANIE PROCESEM PRODUKCYJNYM On już wie jak to działa

2 Statystyczne Sterowanie Procesem Produkcyjnym = Statystyczna Kontrola Procesu = Statistical Process Control SPC

3 PO CO STATYSTYKA W PRODUKCJI? Działalność przedsiębiorstwa (DP) można zapisać wzorem: DP = PROCES 1 + PROCES PROCES n DP jest więc zbiorem różnych procesów. Jedne z nich są ważne (proces projektowania wyrobu, produkcja), inne mało istotne (np. wywóz śmieci z terenu zakładu).

4 PO CO STATYSTYKA W PRODUKCJI? Cel przedsiębiorstwa: sukces poprzez doskonalenie jakości i obniżanie kosztów Jak osiągnąć ten cel?: Poprzez panowanie nad procesami – realizowanie ich w sposób jak najbardziej dla siebie korzystny Jak panować nad procesami?: SPC

5 IDEA SPC Każdy proces produkcyjny ma w swojej naturze zmienność. Ta zmienność wynika z wielu czynników na które często mamy ograniczony wpływ. SPC pozwala na: 1.monitorowanie czy proces jest statystycznie sterowalny (przewidywalny w swoim zachowaniu) 2. odróżnienie zaburzeń jakie się w nim pojawiają (przyczyn specjalnych) od naturalnej zmienności procesu (przyczyn normalnych)

6 NAJCZĘŚCIEJ STOSOWANE TECHNIKI SPC Histogram Karty kontrolne Wskaźniki zdolności procesu Wskaźniki zdolności maszyn

7 HISTORIA SPC Podstawy SPC (karty kontrolne) zostały opracowane przez Waltera A. Shewharta w latach 20tych XX wieku. SPC było stosowane w USA podczas II wojny światowej do poprawy procesów produkcyjnych (dla wojska). Po wojnie przemysł amerykański nie musiał się przejmować jakością produkowanych wyrobów, gdyż zniszczona działaniami wojennymi Europa kupowała wszystko co było w USA produkowane. To spowodowało znaczący spadek zainteresowania technikami statystycznymi na wiele lat.

8 HISTORIA SPC SPC zostało "ponownie odkryte" w USA końcem XX wieku i w ostatnich latach jest popularyzowane jako jedno z narzędzi Six Sigma. Jednocześnie rozwój oprogramowania do analizy statystycznej, arkuszy kalkulacyjnych i systemów zbierania danych znacznie ułatwia stosowanie SPC

9 PODSTAWY DANE I ICH PREZENTACJA ROZKŁADY ZMIENNYCH

10 ETAPY ANALIZY STATYSTYCZNEJ PODSTAWY – DANE I ICH PREZENTACJA POPULACJA PRÓBKA POMIARY OBLICZENIA WYNIKI ANALIZA

11 ETAPY ANALIZY STATYSTYCZNEJ PODSTAWY – DANE I ICH PREZENTACJA POPULACJA PRÓBKA POMIARY OBLICZENIA WYNIKI ANALIZA

12 PRÓBKA PODSTAWY – DANE I ICH PREZENTACJA WYBÓR PRÓBKI: Próbka wybrana do badania musi być odpowiednia Wybór próbki jest kluczowy etapem z punktu widzenia wiarygodności końcowych wyników CECHY DOBRZE DOBRANEJ PRÓBKI: losowa reprezentatywna

13 LOSOWOŚĆ PRÓBKI PODSTAWY – DANE I ICH PREZENTACJA Próbka losowa: pobrana całkowicie przypadkowo z pewnej większej liczby wyrobów (populacji) Procedury pomagające zapewnić losowość próbki: wykorzystanie tablicy liczb losowych losowanie na ślepo pobieranie systematyczne pobieranie wielostopniowe pobieranie warstwowe

14 LOSOWOŚĆ PRÓBKI PODSTAWY – DANE I ICH PREZENTACJA Procedury pomagające zapewnić losowość próbki: wykorzystanie tablicy liczb losowych Tablica liczb losowych to zestaw liczb wygenerowanych całkowicie losowo i którymi posłużyć się można przy wybieraniu elementów do badania. Podstawowy warunek: ponumerowanie wszystkich kontrolowanych jednostek produktu.

15 LOSOWOŚĆ PRÓBKI PODSTAWY – DANE I ICH PREZENTACJA Procedury pomagające zapewnić losowość próbki: losowanie na ślepo Polega na – z założenia przypadkowym – pobieraniu wyrobów do próbki przez kontrolera. Podstawowe warunki: wszystkie elementy z badanej partii wyrobów muszą być w takim samym stopniu dostępne dla kontrolera; musi on pobierać wyroby z różnych miejsc itd.

16 LOSOWOŚĆ PRÓBKI PODSTAWY – DANE I ICH PREZENTACJA Procedury pomagające zapewnić losowość próbki: pobieranie systematyczne Stosuje się, gdy wyroby są dostarczane w sposób ciągły. Do kontroli pobiera się wyroby wyprodukowane w określonych odstępach czasu lub co określoną liczbę wyprodukowanych jednostek.

17 LOSOWOŚĆ PRÓBKI PODSTAWY – DANE I ICH PREZENTACJA Procedury pomagające zapewnić losowość próbki: pobieranie wielostopniowe pobieranie warstwowe Stosowane w przypadku dostarczania wyrobów do kontroli w postaci partii (również tych złożonych z podpartii)

18 LOSOWOŚĆ PRÓBKI PODSTAWY – DANE I ICH PREZENTACJA Szczegółowe zasady losowego pobierania przedmiotów do próbek opisane są w normie: PN 83/N Statystyczna kontrola jakości. Losowy wybór jednostek produktu do próbki.

19 REPREZENTATYWNOŚĆ PRÓBKI PODSTAWY – DANE I ICH PREZENTACJA Próbka reprezentatywna: w dobry sposób odzwierciedla populację, z której została pobrana Dla zapewnienia reprezentatywności konieczna jest odpowiednia liczebność próbki. Im większa próbka, tym bardziej wiarygodne wyniki. Uwaga! Liczności nie można zwiększać w nieskończoność (koszty kontroli). Należy szukać optimum pomiędzy kosztami a wiarygodnością wyników.

20 RODZAJE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Dana: każda informacja opisująca proces, wyrób, usługę, maszynę itd. Typy danych: dane kategorialne (uzyskiwane przy ocenie metodą alternatywną) dane liczbowe (pochodzące z pomiarów)

21 RODZAJE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Typy danych: dane kategorialne Uzyskuje się je w przypadkach: dzielenia (klasyfikowania) przedmiotów na kategorie zliczania liczby przedmiotów w danych kategoriach zliczania proporcji przedmiotów zliczania liczby braków lub niezgodności

22 RODZAJE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Typy danych: dane kategorialne Są one często wykorzystywane w praktyce, bo do ich zebrania zazwyczaj nie potrzeba skomplikowanych i dokładnych urządzeń pomiarowych. Przykład: zliczanie liczny rys na lakierze samochodu; liczba żarówek z danej partii która nie świeci

23 RODZAJE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Typy danych: dane kategorialne Zwykle wyroby dzieli się na 2 kategorie: dobre i złe. Można je jednak dzielić na więcej kategorii, które odzwierciedlać będą jakość. Przykład: klasy I, II, III, IV. Klasa I- najwyższej jakości, klasa IV- najgorszej.

24 RODZAJE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Typy danych: dane kategorialne Zalety: prostota prowadzonej kontroli czytelność otrzymanych wyników Wady: nieprecyzyjność

25 RODZAJE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Typy danych: dane liczbowe Uzyskuje się je w przypadkach: pomiarów cechy produktu, usługi, procesu przeliczania numerycznych wartości z dwóch lub więcej pomiarów liczbowych Wymóg: korzystanie z urządzeń pomiarowych

26 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Najprostszy sposób: spisywanie w rzędzie np.: 5,6,9,11,6,7,7,6,5,9,7,8,7,6,7,8,4,8,7,8,10,10,9,7,8,... Ten zapis jest nieczytelny i mało użyteczny

27 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Użyteczne metody prezentacji danych: tabela częstości wystąpień (liczności) histogram wykres punktowy

28 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Tabela częstości wystąpień Wartość danejWystąpienie danejLiczba wystąpień

29 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Tabela częstości wystąpień Z tabeli takiej można łatwo odczytać: ile pomiarów o danej wartości zarejestrowano która wartość powtarzała się najczęściej w jakim zakresie pojawiają się dane (minimum i maksimum)

30 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Histogram Jest pewnym rozwinięciem tabeli liczności. Szczególnie przydatny do prezentowania dużej ilości danych liczbowych i kategorialnych.

31 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Histogram 31,82033,10033,78034,65034,87035,53036,750 32,01033,12033,79034,69034,88035,62036,680 32,01033,26033,79034,69034,90035,78036,780 32,05033,26033,79034,72034,92035,79036,850 32,23033,28033,82034,72034,96035,86038,520 32,60033,30033,82034,81035,09036,120 32,95033,36033,86034,81035,12036,250 33,03033,54033,95034,81035,16036,560 33,05033,56034,21034,86035,28036,560 33,06033,75034,22034,87035,29036,590

32 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Histogram Procedura rysowania histogramu: 1.Posortowanie danych w porządku od najmniejszej do największej 2. Wyznaczenie wartości najmniejszej i największej: x min, x max

33 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Histogram Procedura rysowania histogramu: 3. Obliczenie szerokości zakresu, w jakim pojawiają się dane (rozstępu): R=x max -x min 4. Wyznaczenie liczby przedziałów: ilość przedziałów= pierwiastek(ilość pomiarów)

34 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Histogram Procedura rysowania histogramu: 5. Ustalenie szerokości przedziałów: szerokość przedziału=rozstęp/l-ba przedziałów Otrzymaną wartość zaokrąglamy w taki sposób, aby narysowany histogram był jak najbardziej czytelny

35 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Histogram Procedura rysowania histogramu: 6. Rozpisanie przedziałów i obliczenie, ile w każdym z nich znajduje się wyników: Przedział wartościIlość wyników w przedziale (31,32]1 (32,33]6 (33,34]21 (34,35]17 (35,36]10 (36,37]9 (37,38]0 (38,39]1

36 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Histogram Procedura rysowania histogramu: 6. Narysowanie wykresu: w zależności od liczby wyników w poszczególnych przedziałach, rysuje się odpowiednią wysokość słupka.

37 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Histogram

38 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Wykres punktowy Tabela Dane z pomiarów uziarnienia mielonego materiału. Pomiary w próbce Obroty młyna [obr/min] ,7633,3736,5436,2036,74 232,7233,1135,1136,5836,40 332,7033,1536,0235,2436,43 432,6933,2535,5936,1436,72 532,6733,2036,0335,5236,55

39 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Wykres punktowy Rys. Wykres punktowy zależności pomiędzy uziarnieniem a obrotami młyna.

40 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Wykres punktowy im większe obroty tym drobniej zmielony materiał

41 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Wykres punktowy przy obrotach 1445 i 1460 próbki charakteryzują się dużą zmiennością (rozrzutem)

42 PREZENTOWANIE DANYCH PODSTAWY – DANE I ICH PREZENTACJA Wykres punktowy próbka jest najbardziej jednorodna przy obrotach 1415

43 ROZKŁADY ZMIENNYCH PODSTAWY – ROZKŁADY ZMIENNYCH Dane zbierane podczas pomiarów zawsze układają się w pewien określony sposób. To w jaki, zależy przede wszystkim od zjawiska, które jest obserwowane i od tego jak zachowuje się proces, jakimi cechami się on charakteryzuje. Sposób, w jaki układają się dane- rozkład zmiennej losowej. Statystycy wyróżniają wiele takich rozkładów ale z punktu widzenia SPC ważne jest tylko kilka z nich.

44 ROZKŁAD NORMALNY PODSTAWY – ROZKŁADY ZMIENNYCH Najczęściej spotykany w praktyce SPC Jest symetryczny względem wartości średniej Jest jednomodalny (ma jedną określoną wartość występującą najczęściej)

45 ROZKŁAD NORMALNY PODSTAWY – ROZKŁADY ZMIENNYCH Funkcja gęstości prawdopodobieństwa (funkcja opisująca prawdopodobieństwo przyjęcia przez zmienną X wybranych wartości): dla - < x< Dystrybuanta: m- wartość oczekiwana (średnia arytmetyczna) σ- odchylenie standardowe

46 ROZKŁAD NORMALNY PODSTAWY – ROZKŁADY ZMIENNYCH m- wartość oczekiwana -> opisuje miejsce, w jakim znajduje się rozkład zmiennej na przyjętej skali (miara położenia) σ- odchylenie standardowe ->opisuje rozrzut rozkładu (miara zmienności)

47 ROZKŁAD NORMALNY PODSTAWY – ROZKŁADY ZMIENNYCH

48 ROZKŁAD NORMALNY PODSTAWY – ROZKŁADY ZMIENNYCH Miary położenia: średnia arytmetyczna rzadko wykorzystywane: średnia geometryczna, średnia harmoniczna, średnia ważona mediana: wartość środkowa w ciągu danych moda (dominanta): wartość występująca najczęściej w zbiorze danych

49 ROZKŁAD NORMALNY PODSTAWY – ROZKŁADY ZMIENNYCH Miary zmienności (pokazują rozproszenie wyników) wariancja odchylenie standardowe UWAGA! Powyższe wzory obowiązują, pod warunkiem, że mamy możliwość zbadania całej populacji, co jest PRAWIE NIGDY SPEŁNIONE

50 ROZKŁAD NORMALNY PODSTAWY – ROZKŁADY ZMIENNYCH Miary zmienności (pokazują rozproszenie wyników) Ponieważ opisujemy rozkład opierając się jedynie na pewnej próbce wyników, pobranej z populacji, stosuje się estymator:

51 ROZKŁAD NORMALNY PODSTAWY – ROZKŁADY ZMIENNYCH Zasada 3σ Ponad 68% wszystkich wyników zawiera się w przedziale x śr +/- σ Ponad 99,7% wszystkich wyników mieści się w przedziale x śr +/- 3σ (ten przedział jest stosowany SPC)

52 ROZKŁAD NORMALNY PODSTAWY – ROZKŁADY ZMIENNYCH Badanie normalności rozkładu Ponieważ wiele metod stosowanych w SPC opiera się na założeniu, ze zebrane dane mają rozkład normalny, należy zawsze sprawdzać, czy to założenie jest spełnione. Testy statystyczne: test chi-kwadrat test Kołmogorowa-Smirnowa


Pobierz ppt "STATYSTYCZNE STEROWANIE PROCESEM PRODUKCYJNYM On już wie jak to działa."

Podobne prezentacje


Reklamy Google