Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Analiza korelacji. Wielowymiarowa zmienna losowa Wynik eksperymentu, który wyrażamy ciągiem n liczb nazywamy n-wymiarową zmienną losową. Jeśli składniki.

Podobne prezentacje


Prezentacja na temat: "Analiza korelacji. Wielowymiarowa zmienna losowa Wynik eksperymentu, który wyrażamy ciągiem n liczb nazywamy n-wymiarową zmienną losową. Jeśli składniki."— Zapis prezentacji:

1 Analiza korelacji

2 Wielowymiarowa zmienna losowa Wynik eksperymentu, który wyrażamy ciągiem n liczb nazywamy n-wymiarową zmienną losową. Jeśli składniki tej zmiennej są ciągłe, można zdefiniować funkcję gęstości prawdpodobieństwa, analogicznie jak w przypadku jednowymiarowym.

3 Dwuwymiarowy rozkład normalny Jeśli obydwa składniki dwuwymiarowej zmiennej losowej podlegają rozkładom normalnym, to mamy do czynienia z dwuwymiarowym rozkładem normalnym. Do pełnego scharakteryzowanie tego rozkładu potrzeba pięciu parametrów.

4 Parametry dwuwymiarowego rozkładu normalnego Rozkład każdego ze składników rozpatrywany oddzielnie nazywa się rozkładem brzegowym. Mamy więc po dwa parametry rozkładów brzegowych: i dla pierwszego składnika (x) i dla drugiego składnika (y) Piątym parametrem jest wsp. korelacji

5 Funkcja gęstości dwuwymiarowego r. norm.

6

7 Współczynnik korelacji

8

9

10 Estymator współczynnika korelacji Pomiary to zbiór n par (x i, y i ) s x i s y to estymatory odchylenia standar- dowego liczone oddzielnie dla x i y.

11 Przedział ufności dla współczynnika korelacji Przybliżony przedział ufności można wyznaczać z tego wzoru tylko dla dużych prób (n > 100) Należy pamiętać o zawsze obowiązującej nierówności:

12 Test istnienia korelacji H 0 : Test może być: jednostronny H 1 : dwustronny H 1 : Do weryfikacji służy statystyka Ma ona rozkład t-Studenta z n-2 st.swob.

13 Test korelacji H 0 odrzucamy, gdy: dla testu jednostronnego dla testu dwustronnego

14 Miary korelacji Współczynnik korelacji można określić dla dowolnej funkcji gęstości dwuwymia- rowego rozkładu prawdopodobieństwa. Współczynnik ten nazywa się wsp. korel. Pearsona. Kwadrat tego współczynnika, zwany współczynnikiem determinacji, mówi jaki procent wariancji zmiennej Y wynika z liniowej zależności od X.

15 Inne miary korelacji Współczynnik Pearsona nie jest dobrą miarą, gdy obie zmienne powiązane są nieliniową zależnością. wsp. korel. rang Spearmana współczynnik Kendalla miara zależności D Höffdinga

16 Metoda najmniejszych kwadratów

17 Przykład: modelowanie farmakokinetyczne V d [l] – objętość dystrybucji Cl [l/h] – klirens

18 MNK: przykład

19

20 MNK Najlepsze oszacowania (estymaty) parametrów modelu otrzymujemy wybierając je tak, aby suma kwadratów różnic wartości zmierzonych i przewidywanych osiągnęła minimum. W naszym przykładzie:

21 MNK: przykład

22 Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów jest ważną metodą estymacji parametrów. Pozwala nie tylko oszacować nieznane parametry, ale także ocenić ich odchylenia standardowe i korelacje między parametrami.

23 Metoda najmniejszych kwadratów MNK jest szczególnie użyteczna przy sporządzaniu krzywych kalibracji. Pozwala również ocenić błędy przewidywań na podstawie tak wyznaczonych krzywych. Istnieje wiele wariantów MNK. Wszystkie one są wnioskami z bardzo ogólnego postulatu, zwanego metodą największej wiarygodności.

24 Metoda największej wiarygodności (MNW) Funkcja wiarygodności (ang. likelihood) określa prawdopodobieństwo uzyskania otrzymanych wyników pomiarów w zależności od parametrów modelu. W naszym przykładzie: MNW uczy, że jako estymaty szukanych parametrów należy przyjąć takie ich wartości przy których funkcja wiarygodności L osiąga maksimum.

25 MNW W przedstawionym przykładzie MNK wyprowa- dzono na podstawie modelu: Jest to tzw. zwykła MNK. Innym często spotykanym wariantem jest ważona MNK wynikająca z modelu stałego współczynnika zmienności:

26 Ważona MNK W ważonej MNK w minimalizowanej funkcji celu uwzględnia się wagi pomiarów. Im mniejszy błąd (wariancja) pomiaru tym większa waga. W naszym przykładzie:


Pobierz ppt "Analiza korelacji. Wielowymiarowa zmienna losowa Wynik eksperymentu, który wyrażamy ciągiem n liczb nazywamy n-wymiarową zmienną losową. Jeśli składniki."

Podobne prezentacje


Reklamy Google