Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów.

Podobne prezentacje


Prezentacja na temat: "Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów."— Zapis prezentacji:

1 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Przykład 1: obiekt - czwórnik RC Cel budowy modelu: ustalenie zależności wiążących napięcie wejściowe czwórnika z napięciem wyjściowym, przy nie obciążonym prądowo wyjściu czwórnika Systemy dynamiczne – przykłady modeli fenomenologicznych

2 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 2 Zmienne obiektu: - spadku: u we (t), u wy (t), u R (t), u C (t), - wejście: u we (t) - naporu: i R (t), i C (t), i obc (t), - wyjście: u wy (t),

3 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 3 Budowa modelu: Prawo równowagi – warunek spójności - II prawo Kirchhoffa dla wejściowego oczka: Uwzględnienie założeń: Założenie:

4 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 4 Uwzględnienie tożsamości (więzów): Wypisanie zależności wiążących dla elementów czwórnika:

5 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 5 Podstawienia – wykorzystanie założeń, tożsamości i zależności wiążących:

6 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 6 Model matematyczny: Równanie różniczkowe: z warunkiem początkowym: lub:

7 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 7 Przy ustalaniu warunków początkowych przydatne wskazówki Przypomnijmy zależności wiążące wartości napięcia i prądu na podstawowych elementach układów elektrycznych - możliwa skokowa zmiana prądu - możliwa skokowa zmiana napięcia - możliwa skokowa zmiana prądu - niemożliwa skokowa zmiana napięcia

8 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 8 - możliwa skokowa zmiana napięcia - niemożliwa skokowa zmiana prądu W naszym przykładzie: Jeżeli przed załączeniem wyłącznika to ponieważ to

9 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 9 Graficzne zobrazowanie: Obiekt dynamiczny Prawo przekształcenia u(t) w y(t) Przykład 1: Struktura modelu

10 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 10 Cel budowy modelu: ustalenie zależności wiążących napięcie wejściowe obwodu z prądem płynącym przez cewkę indukcyjną Przykład 2: obiekt – obwód RL

11 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 11 Zmienne obiektu: - spadku: u we (t), u wy (t), u R (t), u L (t), - wejście: u we (t) - naporu: i R (t), i L (t) - wyjście: i L (t), Budowa modelu: Prawo równowagi – warunek spójności - II prawo Kirchhoffa dla wejściowego oczka: Uwzględnienie tożsamości (więzów):

12 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 12 Wypisanie zależności wiążących dla elementów obwodu: Podstawienia – wykorzystanie tożsamości i zależności wiążących:

13 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 13 Model matematyczny: Równanie różniczkowe: z warunkiem początkowym: lub:

14 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 14 Graficzne zobrazowanie: Obiekt dynamiczny Prawo przekształcenia u(t) w y(t) Przykład 2: Struktura modelu

15 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 15 Wniosek z przykładów 1 i 2: Różne układy elektryczne - taka sama struktura modeli – równań różniczkowych MnMn MoMo Przykład 3: obiekt – wirnik silnika elektrycznego

16 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 16 Budowa modelu: Prawo równowagi – warunek równowagi - II prawo Newtona dla ruchu obrotowego: M B - moment dAlemberta (bezwładności) określony wzorem

17 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 17 Zależności wiążące: - przyjmując założenie upraszczające, że obwody magnetyczne silnika pracują w zakresie liniowych części charakterystyk magnesowania G – indukcyjność rotacji silnika i w – prąd obwodu wzbudzenia silnika i t – prąd obwodu twornika silnika - przyjmując założenie, że prąd wzbudzenia silnika utrzymywany jest na stałej wartości K w – stała elektromechaniczna obwodu wzbudzenia

18 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 18 - przyjmując założenie, że na moment oporowy składają się opory wewnętrzne silnika oraz zewnętrzny moment oporowy M ow – moment oporowy wewnętrzny M oz – moment oporowy zewnętrzny D – współczynnik tarcia wewnętrznego (lepkiego) - przyjmując założenie, że moment oporowy zewnętrzny jest pomijalnie mały

19 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 19 Podstawienia – wykorzystanie założeń i zależności wiążących:

20 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 20 Model matematyczny: Równanie różniczkowe: z warunkiem początkowym: lub:

21 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 21 Graficzne zobrazowanie: Obiekt dynamiczny Prawo przekształcenia u(t) w y(t) Przykład 3: Struktura modelu

22 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 22 Wniosek z przykładów 1 i 2 oraz 3 Różne natura fizyczna układów - taka sama struktura modeli – równań różniczkowych Jeżeli założenie, że moment oporowy zewnętrzny jest pomijalnie mały, nie może być przyjęte Przykład 4: obiekt – wirnik silnika elektrycznego, moment obciążenia niepomijalny

23 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 23 Podstawienia – wykorzystanie założeń i zależności wiążących:

24 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 24 Model matematyczny: Równanie różniczkowe: z warunkiem początkowym: lub:

25 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 25 Graficzne zobrazowanie: Obiekt dynamiczny Prawo przekształcenia u(t) w y(t) Przykład 4: Struktura modelu

26 Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 26 Połączmy wyniki uzyskane w przykładach 2, 3 oraz 4, wykorzystajmy naszą wiedzę aprioryczną o procesach w silniku prądu stałego i zbudujmy jego model (przy określonych założeniach) – następny wykład Spostrzeżenie z przykładu 4 Dwa rodzaje wejść – wejście na które możemy mieć wpływ, i t – sterowanie oraz wejście na które wpływu nie mamy, M oz - zakłócenie


Pobierz ppt "Podstawy automatyki 2010/2011Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów."

Podobne prezentacje


Reklamy Google