Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Reinhard Kulessa1 Wykład 10 8. Materia w polu elektrycznym cd. Zastanówmy się nad faktem wzrostu pojemności kondensatora, do wnętrza którego włożyliśmy.

Podobne prezentacje


Prezentacja na temat: "Reinhard Kulessa1 Wykład 10 8. Materia w polu elektrycznym cd. Zastanówmy się nad faktem wzrostu pojemności kondensatora, do wnętrza którego włożyliśmy."— Zapis prezentacji:

1 Reinhard Kulessa1 Wykład Materia w polu elektrycznym cd. Zastanówmy się nad faktem wzrostu pojemności kondensatora, do wnętrza którego włożyliśmy dielektryk. Jak wytłumaczyć fakt zmniejszenia się natężenia pola elektrycznego wewnątrz kondensatora. – – – – – – – – – – – – –– – – – – – – – – – – – – – – – – – E0E0 E A Według prawa Gaussa strumień natężenia pola elektrycznego jest bezpośrednio związany z ładunkiem wewnątrz powierzchni A dla której ten strumień liczymy. Zmniejszenie się natężenia pola oznacza że wypadkowy ładunek wewnątrz powierzchni A jest mniejszy niż wtedy gdy nie ma tam dielektryka. Wynika stąd, że na powierzchni dielektryka wewnątrz powierzchni A muszą być ładunki ujemne. pol

2 Reinhard Kulessa2 Ładunków jest mniej niż dodatnich, gdyż pole nie znika zupełnie. Na drugiej powierzchni izolatora wytwarza się ładunek dodatni. Ładunek pojawiający się na izolatorze umieszczonym w polu elektrycznym nazywamy ładunkiem polaryzacyjnym. Pojawianie się tego ładunku związane jest z indukowaniem się i uszeregowaniem dipoli elektrycznych w dielektryku, lub tylko uszeregowaniem istniejących dipoli. Gdybyśmy pomiędzy okładki kondensatora włożyli przewodnik, to ładunek polaryzacyjny byłby identyczny jak ten na okładkach. Pole wewnątrz przewodnika byłoby równe 0. Pole istniałoby tylko w małych szczelinach między okładkami a przewodnikiem. – – – – – – – – – – – – –– – – – – – – – – – – – – – – – – – E0E0 E Również w tym przypadku zaobserwujemy wzrost pojemności kondensatora.

3 Reinhard Kulessa3 8.1 Wektor polaryzacji P W izolatorach w przeciwieństwie do przewodników ładunki nie mogą się swobodnie poruszać. Jednak w atomach i cząsteczkach może nastąpić przemieszczenie się ładunku pod wpływem pola elektrycznego E Na wskutek działania pola nastąpiło przesunięcie ładunków o. Pod wpływem pola elektrycznego następuje również przesunięcie jonów w kryształach. Istnieją również cząsteczki posiadające moment dipolowy wynikający z ich struktury. Dipole te polaryzują się pod wpływem pola E.

4 Reinhard Kulessa4 Przykładem struktur posiadających moment dipolowych są np. CO, SO 2, H 2 O, HCl, NH 3, C 2 H 5 OH. H+H+ H+H+ H+H Cl - p e =3.4· C·m p e =6.2· C·m Jeśli w przypadku atomu czy cząsteczki ładunek przesunie się o, to moment dipolowy będzie równy p = q. Jeżeli w jednostce objętości znajduje się N atomów które mogą polaryzować, to moment dipolowy na jednostkę objętości (8.1)

5 Reinhard Kulessa5 Wektor P nazywamy wektorem polaryzacji. +Ze -Ze promień a Zastanówmy się od czego ten wektor zależy. Przesunięty o ładunek Ze oddziaływuje tylko z częścią chmury elektronowej o promieniu. E F1F1 F2F2 Natężenie pola elektrycznego pochodzące od ładunku polaryzacyjnego ma wartość: Ze jest ładunkiem całej kuli o promieniu a.

6 Reinhard Kulessa6 Równowaga nastąpi wtedy gdy. Oznacza to, że. Widać więc, że moment dipolowy jest proporcjonalny do natężenia zewnętrznego pola polaryzującego. Jest tak przynajmniej dla niedużych pól. 8.2 Ładunek polaryzacyjny Wewnątrz dielektryka wprowadzonego do kondensatora pojawi się ładunek polaryzacyjny. Rozważmy płytkę dielektryka umieszczoną w jednorodnym polu elektrycznym

7 Reinhard Kulessa7 E E – – – – – ± ± ± ± ± P Pole powierzchni A Widzimy, że na wskutek polaryzacji dielektryka w polu elektrycznym następuje przesuniecie się ładunku. Na powierzchni A pojawia się ładunek

8 Reinhard Kulessa8 Gęstość powierzchniowa ładunku polaryzacyjnego wynosi więc: (8.2). Jest to dokładnie bezwzględna wartość wektora polaryzacji | |P|, (patrz r. (8.1)), czyli (8.3) Widzimy więc, że gęstość powierzchniowa ładunku na powierzchni dielektryka jest równa wartości wektora polaryzacji w jego wnętrzu. Rozważmy jeszcze raz naładowany kondensator wypełniony dielektrykiem.

9 Reinhard Kulessa9 – – – – – – – – – – – – –– – – – – – – – – – – – – – – – – – pol swob A W celu znalezienia wypadkowego natężenia pola elektrycznego, zastosujmy do zaznaczonej czerwonej powierzchni Prawo Gaussa.

10 Reinhard Kulessa10 Korzystając z równania (8.3) otrzymujemy: (8.4). Pamiętamy, że wektor polaryzacji dielektryka P zależy od natężenia zewnętrznego pola elektrycznego E. Tą zależność zapisuje się zwykle w postaci: (8.5) Wielkość nazywamy podatnością elektryczną dielektryka. Podatność elektryczna nie zawsze musi być liczbą.W wielu przypadkach jest wielkością tensorową. Gdy mamy cząsteczkę o wyróżnionej osi symetrii ( nie sferę), to można się spodziewać się innego przesunięcia ładunku wzdłuż osi

11 Reinhard Kulessa11 Cząsteczki niż w kierunku prostopadłym do niej. Zachodzi to np. dla cząsteczki CO 2. OO C Może być tak, że: E E || E P P P || Widzimy więc, że wektor polaryzacji może nie być równoległy do wektora pola elektrycznego. Wzór (8.4) możemy napisać następująco:

12 Reinhard Kulessa12 Gdzie, Element xz oznacza, że składowa E x natężenia pola elektrycznego daje przyczynek do składowej P z wektora polaryzacji, itp.. Zwykle tensor podatności elektrycznej jest symetryczny, tzn. xy = yx, xz = zx, zy = yz.

13 Reinhard Kulessa13 Tensor ten jest więc opisany przez sześć elementów. Można znaleźć układ współrzędnych w którym jest tensorem diagonalnym. Po tych uwagach wróćmy do wzorów (8.4) i (8.5). W oparciu o te wzory możemy napisać: Po krótkich przekształceniach otrzymujemy: (8.6) Widzimy więc, że E < E swob. Wielkość (8.7) Wielkość nazywamy stałą dielektryczną lub przenikalnością elektryczną ośrodka.

14 Reinhard Kulessa14 Korzystając z wzoru (8.6) możemy napisać wyrażenie na pojemność kondensatora płaskiego wypełnionego dielektrykiem. 8.3 Ładunek polaryzacyjny dla niejednorodnej polaryzacji Niejednorodna polaryzacja zachodzi wtedy, gdy polaryzacja zmienia się od miejsca do miejsca, czyli. Należy więc oczekiwać, że wewnątrz dielektryka pojawi się jakaś gęstość ładunku 0, gdyż przez część powierzchni ograniczającej obszar o małej objętości może wejść więcej ładunku niż wyjść przez drugą jej część.

15 Reinhard Kulessa15 Ilość ładunku przechodzącego przez powierzchnię jest maksymalna gdy wektor polaryzacji P do powierzchni a minimalna, gdy jest on równoległy do powierzchni. Możemy to napisać w następujący sposób: (8.8) Wektor n jest wektorem prostopadłym do powierzchni ograniczającej objętość, który rozważamy. Ładunek przesunięty na zewnątrz obszaru o objętości pozostawia w środku ładunek przeciwnego znaku Z drugiej strony ładunek Q pol możemy przypisać przestrzennemu ładunkowi polaryzacyjnemu o gęstości pol

16 Reinhard Kulessa16 Jeśli tak się zdarzy, to w przypadku niezerowej gęstości ładunku polaryzacyjnego można powiązać tą gęstość z wektorem polaryzacji przez Prawo Gaussa. Otrzymujemy wtedy: (8.9) dA = n dA jest wektorem reprezentującym powierzchnię w której zawiera się ładunek polaryzacyjny. Stosując twierdzenie Gaussa do całki powierzchniowej otrzymujemy: Z tych dwóch równań mamy, że (8.10) Równanie (8.10) przedstawia różniczkową postać Prawa Gaussa dla dielektryków.

17 Reinhard Kulessa Równania elektrostatyki w dielektrykach Prawo Gaussa w formie całkowej ma następującą postać: (8.11) Można to również zapisać tak: (8.12) Forma różniczkowa Prawa Gaussa wygląda następująco: (8.13).

18 Reinhard Kulessa18 Po przekształceniu ostatniego wzoru otrzymujemy: (8.14) W oparciu o wzór (8.7) otrzymujemy: (8.15), oraz. (8.16)

19 Reinhard Kulessa Wektor przesunięcia D Ze względów historycznych przyjęło się wprowadzać wektor D zwany wektorem przesunięcia zdefiniowany następująco: (8.17) Wprowadzając do tego wzoru wyrażenie na polaryzację z wzoru (8.5) możemy napisać: Należy pamiętać, że i są tensorami. Współczynnik ( (1+ )) nazywamy względną przenikalnością dielektryczną ośrodka. (8.19)

20 Reinhard Kulessa20 Wszystkie dotychczasowe rozważania nie wpływają na zachowawczość pola E. Dalej słuszne jest równanie rot E = 0. Równanie to razem z prawem Gaussa w formie różniczkowej pozwala wyznaczyć pole E z dokładnością do stałej addytywnej. Równania (8.15) i (8.16) po wprowadzeniu wektora D przechodzą odpowiednio w: (8.20)

21 Reinhard Kulessa Dielektryk z trwałymi momentami dipolowymi W rozdziałach (5.7.4) i (5.9) omówiliśmy własności dipola i jego oddziaływanie z polem elektromagnetycznym. Przyłożone pole elektryczne może uszeregować dipole. To porządkujące działanie pola jest niszczone przez ruchy termiczne. Można więc przypuszczać, że stopień uporządkowania dielektryka polarnego będzie określony przez relację pomiędzy energią potencjalną uzyskiwaną przez działania zewnętrznego pola o natężeniu E, a energią kinetyczna ruchu termicznego. W równaniu (5.32) stwierdziliśmy, że energia potencjalna dipola umieszczonego w polu o natężeniu E jest dane przez :

22 Reinhard Kulessa22 W oparciu o mechanikę statystyczną, w stanie równowagi termicznej liczba cząstek o energii potencjalnej E p jest proporcjonalna do, gdzie T jest temperaturą w skali bezwzględnej, a k- jest stałą Bolzmana. Okazuje się, że w polarnym dielektryku, w jednostkowym kącie bryłowym d liczba cząsteczek n( ) odchylonych o kąt od kierunku pola elektrycznego E jest równa: Dla zwykłych temperatur i pól wykładnik ten jest mały. Można więc eksponentę rozwinąć w szereg. (8.21)

23 Reinhard Kulessa23 W oparciu o powyższy wzór całkowita liczba cząsteczek w rozważanej objętości jest równa: bo całka z cos( ) po całej objętości jest równa zero. Z równania (8.21) wynika, że więcej cząstek będzie miało ustawione momenty dipolowe równolegle do pola zewnętrznego E niż antyrównolegle. W materiale pojawi się więc pewien wypadkowy moment dipolowy. Wypadkowa polaryzacja |P| będzie więc równa:

24 Reinhard Kulessa24 Pamiętając od czego zależy n( ), całkowitą polaryzację otrzymamy całkując po kątowej zależności elementu objętości d, czyli po sin d d. Po podstawieniu wartości n( ) i wycałkowaniu po kącie, otrzymamy, Korzystając z całki otrzymujemy:

25 Reinhard Kulessa25 (8.22) Zgodnie z wzorami (8.5) (P= 0 E) i (8.7) (1+ = ), otrzymujemy, że: (8.23). Polaryzacja dielektryka polarnego jest proporcjonalna do przyłożonego natężenia pola elektrycznego i odwrotnie proporcjonalna do temperatury. Zależność polaryzacji od 1/T nazywamy prawem Curie. Widzimy również, że dla dielektryków polarnych podatność dielektryczna czy też stała dielektryczna jest malejącą funkcją temperatury T.

26 Reinhard Kulessa26 1/T 1 Ten kąt jest miarą polaryzacji, gdyż Pomiar dla różnych temperatur pozwala ustalić czy mamy do czynienia z dielektrykiem polarnym czy nie.


Pobierz ppt "Reinhard Kulessa1 Wykład 10 8. Materia w polu elektrycznym cd. Zastanówmy się nad faktem wzrostu pojemności kondensatora, do wnętrza którego włożyliśmy."

Podobne prezentacje


Reklamy Google