Szymon Gruszczyński Dominki Szady Mateusz Konciak Norman Kominiarczyk.

Slides:



Advertisements
Podobne prezentacje
Białka – budowa, rodzaje i właściwości
Advertisements

SubstanCje O znaczeNiu biologIcznym- Białka
Jak si ę zdrowo od ż ywia ć.  Najwa ż niejszym celem zdrowego ż ywienia jest dostarczanie organizmowi wszystkich sk ł adników od ż ywczych w odpowiednich.
Składniki odżywcze.
Sole w kuchni.
Zasady zdrowego odżywiania "W zdrowym ciele zdrowy duch"
Równowaga chemiczna - odwracalność reakcji chemicznych
Szulbe ®. 1.Rys historyczny a)1806 r. - J. Berzelius wprowadził nazwę „związki organiczne” dla wszystkich substancji występujących w organizmach roślinnych.
KWASY Justyna Loryś.
Czyli co, ile i dlaczego warto jeść. ODŻYWIANIE To proces życiowy polegający na dostarczeniu pokarmu każdej żywej komórce organizmu. Materiał Regulacyjny.
Nieodwracalny proces powodujący zmiany właściwości białek, polega na zniszczeniu wewnętrznej struktury białek. Denaturację białka spowodować mogą: podwyższona.
Tworzenie odwołania zewnętrznego (łącza) do zakresu komórek w innym skoroszycie Możliwości efektywnego stosowania odwołań zewnętrznych Odwołania zewnętrzne.
Zajęcia 1-3 Układ okresowy pierwiastków. Co to i po co? Pojęcie masy atomowej, masy cząsteczkowej, masy molowej Proste obliczenia stechiometryczne. Wydajność.
Peptydy i białka Reakcja kondensacji α-aminokwasów Peptydy
Nature Tan Здоровый загар NatureTan NATURALNA OPALENIZNA NATURALNA OPALENIZNA.
Warszawa, 10 października ZASADY ZBILANSOWANEGO ODŻYWANIA.
Chemia nieorganiczna Sole Nazwy i wzory soli. Kwasy przeciw zasadom.
Zboża Pan młynarz przynosi kosz z pieczywem: świeżymi bułkami i chlebem. Chleb powstaje z mąki, a mąka ze zbóż. Dowiemy się, jak powstaje chleb i jakie.
Stężenia Określają wzajemne ilości substancji wymieszanych ze sobą. Gdy substancje tworzą jednolite fazy to nazywa się je roztworami (np. roztwór cukru.
Składniki odżywcze i ich rola w organizmie Białka, cukry i tłuszcze
Cukrzyca diabetes melitus (łac.). Powszechnie znane typy cukrzycy Typ I Cukrzyca typu 1 występuje wtedy, gdy własny układ odpornościowy organizmu niszczy.
(2/2) Współczesna diagnostyka w medycynie
ODŻYWIANIE. METABOLIZM Ogół wszystkich procesów chemicznych i fizycznych zachodzących w komórkach. Metabolizm = anabolizm( synteza) + katabolizm ( rozkład)
„ Kwaśna bateria” czyli jak działają akumulatory?.
Dlaczego boimy się promieniotwórczości?
Ryzyko a stopa zwrotu. Standardowe narzędzia inwestowania Analiza fundamentalna – ocena kondycji i perspektyw rozwoju podmiotu emitującego papiery wartościowe.
Przemiana chemiczna to taka przemiana, w wyniku której z kilku (najczęściej dwóch) substancji powstaje jedna nowa lub dwie nowe substancje o odmiennych.
Scenariusz lekcji chemii: „Od czego zależy szybkość rozpuszczania substancji w wodzie?” opracowanie: Zbigniew Rzemieniuk.
EWALUACJA PROJEKTU WSPÓŁFINANSOWANEGO ZE ŚRODKÓW UNII EUROPEJSKIE J „Wyrównywanie dysproporcji w dostępie do przedszkoli dzieci z terenów wiejskich, w.
Podstawowe pojęcia termodynamiki chemicznej -Układ i otoczenie, składniki otoczenia -Podział układów, fazy układu, parametry stanu układu, funkcja stanu,
Wyższe kwasy karboksylowe i mydła
WARZYWA SMACZNE I ZDROWE.  Pomaga wyostrzyć wzrok, w krótkim czasie poprawia koloryt cery, reguluje prace żołądka.  Zawiera witaminy A, B1, B2, PP i.
Woda to jeden z najważniejszych składników pokarmowych potrzebnych do życia. Woda w organizmach roślinnych i zwierzęcych stanowi średnio 80% ciężaru.
Woda Cud natury.
POLISACHARYDY. Polisacharydy (inaczej: wielocukry, cukry złożone) – grupa węglowodanów i zarazem biopolimerów, które są złożone z merów będących cukrami.
Reakcje charakterystyczne w chemii organicznej – identyfikacja związków i grup funkcyjnych -Grupy hydroksylowe, -Grupa aldehydowa, -Grupa ketonowa -Grupa.
KWASY KARBOKSYLOWE ZAWIERAJĄCE DODATKOWE GRUPY FUNKCYJNE ORAZ ZWIĄZKI HETEROCYKICZNE Aneta Pieńkowska kl. 2c Roksana Hreczuch kl. 2c.
2.27 Anabolizm i katabolizm
Autorzy: Kamil Kawecki IIB Piotr Kornacki IIB Piotr Niewiadomski IIB.
Wodorotlenki.
Przygotowały: Laura Andrzejczak oraz Marta Petelenz- Łukasiewicz z klasy 2”D”
Śniadanie daje moc 7 IV 2016r.
Alkohole polihydroksylowe
Fizyczne metody określania ilości pierwiastków i związków chemicznych. Łukasz Ważny.
- nie ma własnego kształtu, wlana do naczynia przybiera jego kształt, - ma swoją objętość, którą trudno jest zmienić tzn. są mało ściśliwe (zamarzając.
 Cynk w przyrodzie występuje wyłącznie w formie związanej w postaci minerałów: - ZnS – blenda cynkowa, - ZnCO 3 – smitsonit  Otrzymywanie metalicznego.
Pamietaj!!! ŻYĆ DŁUŻEJ !. Zasada 1 Należy dbać o urozmaicenie posiłków Racjonalnie jeść to znaczy jeść zdrowo, czyli zapewniając codziennie swojemu organizmowi.
Opracowała Bożena Smolik Konsultant Arleta Poręba-Konopczyńska
Magdalena Ocińska Jessica Nowicki Otalora IIA
Czym jest gramofon DJ-ski?. Gramofon DJ-ski posiada suwak Pitch służący do płynnego przyspieszania bądź zwalniania obrotów talerza, na którym umieszcza.
-Tłuszcze *proste – estry alkoholi i kwasów tłuszczowych *złożone – estry alkoholi i kwasów tłuszczowych zawierające dodatki innych związków *Sterole.
Jestem tym,co jem Edukacyjny Projekt Uczniowski Gimnazjum im. prof. Stefana Myczkowskiego Rok szkolny 2015/2016.
Tlenki, nadtlenki, ponadtlenki
Alkohole jednowodorotlenowe i wielowodorotlenowe
Własności elektryczne materii
-Występowanie i właściwości - Ważniejsze związki fosforu
Budowa chemiczna organizmów
Wpływ aktywności fizycznej na zdrowie dziecka. Aktywność fizyczna wpływa na:  Sferę emocjonalną  Sferę intelektualną  Sferę społeczną.
Wpływ wiązania chemicznego na właściwości substancji -Związki o wiązaniach kowalencyjnych, -Związki jonowe (kryształy jonowe), -Kryształy o wiązaniach.
Co wiemy o innych składnikach powietrza?
Promieniowanie jonizujące. Co to jest promieniotwórczość?
Roztwory buforowe / mieszaniny buforowe / bufory
Zasady zdrowego odżywiania
WODA.
WYKŁAD
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Zapis prezentacji:

Szymon Gruszczyński Dominki Szady Mateusz Konciak Norman Kominiarczyk

Białka – wielkocząsteczkowe (masa cząsteczkowa od ok do kilku mln Daltonów) biopolimery, a właściwie biologiczne polikondensaty, zbudowane z reszt aminokwasów połączonych ze sobą wiązaniami peptydowymi -CONH-. Występują we wszystkich żywych organizmach oraz wirusach. Synteza białek odbywa się przy udziale specjalnych organelli komórkowych zwanych rybosomami. Zazwyczaj liczba reszt aminokwasowych pojedynczego łańcucha polipeptydowego jest większa niż 100, a cała cząsteczka może być zbudowana z wielu łańcuchów polipeptydowych (podjednostek). Głównymi pierwiastkami wchodzącymi w skład białek są C, O, H, N, S, także P oraz niekiedy kationy metali Mn 2+, Zn 2+, Mg 2+, Fe 2+, Cu 2+, Co 2+ i inne. Skład ten nie pokrywa się ze składem aminokwasów. Wynika to stąd, że większość białek (są to tzw. białka złożone lub proteidy) ma dołączone do reszt aminokwasowych różne inne cząsteczki. Regułą jest przyłączanie cukrów, a ponadto kowalencyjnie lub za pomocą wiązań wodorowych dołączane może być wiele różnych związków organicznych pełniących funkcje koenzymów oraz jony metali.

Zsyntetyzowany w komórce łańcuch białkowy przypomina unoszącą się swobodnie w roztworze "nitkę", która może przyjąć dowolny kształt (w biofizyce nazywa się to kłębkiem statystycznym), ale ulega procesowi tzw. zwijania białka (ang. protein folding) tworząc mniej lub bardziej sztywną strukturę przestrzenną, zwaną strukturą lub konformacja białka "natywną". Tylko cząsteczki, które uległy zwinięciu do takiej struktury, mogą pełnić właściwą danemu białku rolę biochemiczną. Ze względu na skalę przestrzenną pełną strukturę białka można opisać na czterech poziomach: Struktura pierwszorzędowa białka (sekwencja aminokwasów, struktura pierwotna białka) – kolejność aminokwasów w łańcuchu polipeptydowym Struktura drugorzędowa białka – przestrzenne ułożenie fragmentów łańcuchów polipeptydowych. Do struktur drugorzędowych zaliczana jest: helisa alfa (ang. α helix) harmonijka beta (ang. β sheet) beta zakręt (pętle omega) (ang. β hairpin) Struktura trzeciorzędowa białka – wzajemne położenie elementów struktury drugorzędowej. Struktura czwartorzędowa białka – wzajemne położenie łańcuchów polipeptydowych oraz ewentualnie struktur niebiałkowych (grupa prostetyczna): cukrów w glikoproteidach lipidów w lipoproteidach kwasów nukleinowych w nukleoproteidach barwników w chromoproteidach resztę kwasu fosforowego w fosfoproteidach.

Białka nie posiadają charakterystycznej dla siebie temperatury topnienia. Przy ogrzewaniu w roztworze, a tym bardziej w stanie stałym, ulegają, powyżej pewnej temperatury, nieodwracalnej denaturacji (ścinanie się włókien białka) – zmianie struktury, która czyni białko nieaktywnym biologicznie (codziennym przykładem takiej denaturacji jest smażenie lub gotowanie jajka). Jest to spowodowane nieodwracalną utratą trzeciorzędowej lub czwartorzędowej budowy białka. Z tej przyczyny dla otrzymania suchej, ale niezdenaturowanej próbki danego białka, stosuje się metodę liofilizacji, czyli odparowywania wody lub innych rozpuszczalników z zamrożonej próbki pod zmniejszonym ciśnieniem. Denaturacja białek może również zachodzić pod wpływem soli metali ciężkich, mocnych kwasów i zasad, niskocząsteczkowych alkoholi, aldehydów oraz napromieniowania. Wyjątek stanowią proste białka, które mogą ulegać także procesowi odwrotnemu, tzw. renaturacji – po usunięciu czynnika, który tę denaturację wywołał. Niewielka część białek ulega trwałej denaturacji pod wpływem zwiększonego stężenia soli w roztworze, jednak proces wysalania jest w większości przypadków w pełni odwracalny, dzięki czemu umożliwia izolowanie lub rozdzielanie białek. Białka są na ogół rozpuszczalne w wodzie. Do białek nierozpuszczalnych w wodzie należą tzw. białka fibrylarne, występujące w skórze, ścięgnach, włosach (kolagen, keratyna) lub mięśniach (miozyna). Niektóre z białek mogą rozpuszczać się w rozcieńczonych kwasach lub zasadach, jeszcze inne w rozpuszczalnikach organicznych. Na rozpuszczalność białek ma wpływ stężenie soli nieorganicznych w roztworze, przy czym małe stężenie soli wpływa dodatnio na rozpuszczalność białek. Jednak przy większym stężeniu następuje uszkodzenie otoczki solwatacyjnej, co powoduje wypadanie białek z roztworu. Proces ten nie narusza struktury białka, więc jest odwracalny i nosi nazwę wysalania białek. Białka posiadają zdolność wiązania cząsteczek wody. Efekt ten nazywamy hydratacją. Nawet po otrzymaniu próbki suchego białka zawiera ona związane cząsteczki wody. Białka, ze względu na obecność zasadowych grup NH 2 oraz kwasowych COOH mają charakter obojnaczy – w zależności od pH roztworu będą zachowywały się jak kwasy (w roztworze zasadowym) lub jak zasady (w roztworze kwaśnym). Dzięki temu białka mogą pełnić rolę bufora stabilizującego pH, np. krwi. Różnica pH nie może być jednak znaczna, gdyż białko może ulec denaturacji. Wypadkowy ładunek białka zależy od ilości aminokwasów kwaśnych i zasadowych w cząsteczce. Wartość pH, w której ładunki dodatnie i ujemne aminokwasów równoważą się nazywany jest punktem izoelektrycznym białka. Białka odgrywają zasadniczą rolę we wszystkich procesach biologicznych. Biorą udział w katalizowaniu wielu przemian w układach biologicznych (enzymy są białkami), uczestniczą w transporcie wielu małych cząsteczek i jonów (np. 1 cząsteczka hemoglobiny przenosząca 4 cząsteczki tlenu), służą jako przeciwciała oraz biorą udział w przekazywaniu impulsów nerwowych jako białka receptorowe. Białka pełnią także funkcję mechaniczno-strukturalną. Wszystkie białka zbudowane są z aminokwasów. Niektóre białka zawierają nietypowe, rzadko spotykane aminokwasy, które uzupełniają ich podstawowy zestaw. Wiele aminokwasów (zazwyczaj ponad 100) połączonych ze sobą wiązaniami peptydowymi tworzy łańcuch polipeptydowy, w którym można wyróżnić dwa odmienne końce. Na jednym końcu łańcucha znajduje się niezablokowana grupa aminowa (tzw. N-koniec), na drugim niezablokowana grupa karboksylowa

Istnieje wiele kryteriów podziału białek. Ze względu na budowę i skład, dzielimy białka na proste i złożone. Białka proste (proteiny) zbudowane są wyłącznie z aminokwasów. Dzielimy je na następujące grupy: protaminy – są silnie zasadowe, charakteryzują się dużą zawartością argininy oraz brakiem aminokwasów zawierających siarkę. Są dobrze rozpuszczalne w wodzie. Najbardziej znanymi protaminami są: klupeina, salmina, cyprynina, ezocyna, gallina. histony – podobnie jak protaminy są silnie zasadowe i dobrze rozpuszczają się w wodzie; składniki jąder komórkowych (w połączeniu z kwasem deoksyrybonukleinowym), czyli są obecne także w erytroblastach. W ich skład wchodzi duża ilość takich aminokwasów jak lizyna i arginina. albuminy – białka obojętne, spełniające szereg ważnych funkcji biologicznych: są enzymami, hormonami i innymi biologicznie czynnymi związkami. Dobrze rozpuszczają się w wodzie i rozcieńczonych roztworach soli, łatwo ulegają koagulacji. Znajdują się w tkance mięśniowej, osoczu krwi i mleku. Globuliny -w ich skład wchodzą wszystkie aminokwasy białkowe, z tym że kwas asparaginowy i kwas glutaminowy w większych ilościach; w odróżnieniu od albumin są źle rozpuszczalne w wodzie, natomiast dobrze w rozcieńczonych roztworach soli; posiadają podobne właściwości do nich. Występują w dużych ilościach w płynach ustrojowych i tkance mięśniowej. prolaminy – są to typowe białka roślinne, występują w nasionach. Charakterystyczną właściwością jest zdolność rozpuszczania się w 70% etanolu. gluteliny – podobnie jak prolaminy – to typowe białka roślinne; posiadają zdolność rozpuszczania się w rozcieńczonych kwasach i zasadach. skleroproteiny – białka charakteryzujące się dużą zawartością cysteiny i aminokwasów zasadowych oraz kolagenu i elastyny, a także proliny i hydroksyproliny, nierozpuszczalne w wodzie i rozcieńczonych roztworach soli. Są to typowe białka o budowie włóknistej, dzięki temu pełnią funkcje podporowe. Do tej grupy białek należy keratyna.

Białka złożone (dawniej - proteidy): chromoproteiny – złożone z białek prostych i grupy prostetycznej – barwnika. Należą tu hemoproteidy (hemoglobina, mioglobina, cytochromy, katalaza, peroksydaza) zawierające układ hemowy oraz flawoproteiny. fosfoproteiny – zawierają około 1% fosforu w postaci reszt kwasu fosforowego. Do tych białek należą: kazeina mleka, witelina żółtka jaj, ichtulina ikry ryb. nukleoproteiny – składają się z białek zasadowych i kwasów nukleinowych. Rybonukleoproteimy są zlokalizowane przede wszystkim w cytoplazmie: w rybosomach, mikrosomach i mitochondriach, w niewielkich ilościach także w jądrach komórkowych, a poza jądrem tylko w mitochondriach. Wirusy są zbudowane prawie wyłącznie z nukleoproteidów. lipidoproteiny – połączenia białek z tłuszczami prostymi lub złożonymi, np. sterydami, kwasami tłuszczowymi. Lipoproteidy są nośnikami cholesterolu (LDL, HDL, VLDL). Wchodzą na przykład w skład błony komórkowej. glikoproteiny – ich grupę prostetyczną stanowią cukry, należą tu m.in. mukopolisacharydy (ślina). Glikoproteidy występują też w substancji ocznej i płynie torebek stawowych. metaloproteiny – zawierają jako grupę prostetyczną atomy metalu (miedź, cynk, żelazo, wapń, magnez, molibden, kobalt). Atomy metalu stanowią grupę czynną wielu enzymów. Białka dzielimy również ze względu na właściwości odżywcze – wyróżnia się białka doborowe i niedoborowe. BIAŁKA DOBOROWE (Pełnowartościowe) – te które w swoim składzie zawierają wszystkie aminokwasy egzogenne. Do takich białek zaliczamy np. albuminę, białko jaja kurzego, białko mleka i mięsa. BIAŁKA NIEDOBOROWE (Niepełnowartościowe) – te w których brakuje choćby jednego aminokwasu egzogennego. Przykładem takiego białka jest kolagen, żelatyna.

Przykłady rozmieszczenia białek w obrębie komórki białka charakterystyczne dla poszczególnych organelli uwidoczniono przy pomocy przeciwciał znakowanych GFP

Trawienie białek zaczyna się dopiero w żołądku, gdzie komórki główne komórek gruczołowych żołądka wydzielają nieczynny enzym pepsynogen. Komórki okładzinowe wydzielają kwas solny, w obecności którego pepsynogen przekształca się w postać czynną – pepsynę. W jelicie cienkim działają trypsyna i chymotrypsyna, które rozkładają cząsteczki polipeptydów do tripeptydów i dipeptydów. Te z kolei rozkładane są przez peptydazy ściany jelita cienkiego do aminokwasów, które zostają wchłaniane do krwi za pomocą odpowiednich przenośników znajdujących się w rąbku szczoteczkowym i żyłą wrotną wędrują do wątroby. Stamtąd większość aminokwasów dalej dostaje się z krwią do komórek ciała. Nadwyżka pozbawiana jest reszt aminowych, przez co powstaje amoniak i ketokwasy. Amoniak przekształcany jest w mniej toksyczny mocznik, który z krwią odtransportowywany jest do nerek. Natomiast ketokwasy mogą zostać wykorzystane do syntezy cukrów i niektórych aminokwasów, zużyte na cele energetyczne bądź przekształcone w tłuszcze zapasowe.

Dobrymi źródłami białek są: mięso, jaja, orzechy, zboża, rośliny strączkowe oraz nabiał, jak mleko czy ser

Reakcja ksantoproteinowa, próba ksantoproteinowa (gr. ksanthós - żółty) – reakcja charakterystyczna białek zawierających aminokwasy z pierścieniami aromatycznymi (np. tryptofan, tyrozyna, fenyloalanina) ze stężonym kwasem azotowym(V). W wyniku znitrowania aromatycznych ugrupowań powstaje trwałe, żółte zabarwienie. Schemat reakcji na przykładzie tyrozyny.

Reakcja biuretowa - charakterystyczna reakcja chemiczna otrzymywania wiązań biuretowych. Reakcja ta odgrywa duże znaczenie przy otrzymywaniu pochodnych biuretu, zachodzi w trakcie tworzenia się pianek poliuretanowych, a także jest stosowana jako test na występowanie co najmniej dwóch wiązań peptydowych bezpośrednio obok siebie lub przedzielonych nie więcej niż jednym atomem węgla w rozmaitych związkach organicznych, głównie w białkach i innych polipeptydach.

Denaturacja białek, która polega na całkowitym zniszczeniu ich struktury, zachodzi na skutek działania wysokiej temperatury, mocnych kwasów i zasad, detergentów. Różne białka są w niejednakowy sposób wrażliwe na działanie czynników denaturujących. Denaturacja jest to proces praktycznie nieodwracalny. W przypadku białek o prostej budowie wykazano odwracalność tego procesu i nazwano go renaturacją. Denaturacja białek powoduje utratę przez nie właściwości biologicznych, przy czym zostaje zachowana ich struktura pierwszorzędowa.