Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 1 Badania operacyjne Paweł Górczyński

Podobne prezentacje


Prezentacja na temat: "Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 1 Badania operacyjne Paweł Górczyński"— Zapis prezentacji:

1 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 1 Badania operacyjne Paweł Górczyński

2 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 2 Wstęp Termin badanie operacyjne powstał podczas II wojny światowej i przetrwał do dzisiaj. W terminologii angielskiej używa się terminu Badania operacyjne – Operational Research W terminologii amerykańskiej używa się terminu Nauka o Zarządzaniu – Management Science Definicja: Badania operacyjne to naukowa metoda rozwiązywania problemów z zakresu podejmowania decyzji kierowniczych. – wg. Harveya Wagnera

3 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 3 Dziedziny Produkcja Transport Finanse Inwestycje Zakupy Zasoby ludzkie Źródło Problemy do optymalizacji możemy znaleźć w różnych dziedzinach życia gospodarczego.

4 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 4 Obszar wiedzy badań operacyjnych matematyka statystykaekonomia EMSM SE EM – ekonomia matematyczna SE – statystyka ekonomiczna SM – statystyka matematyczna

5 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 5 Pola zastosowań Pole zastosowań badań operacyjnych obejmuje sporządzanie matematycznych, ekonomicznych i statystycznych opisów (modeli) procesów decyzyjnych charakteryzujących się dużą złożonością oraz niepewnością. Def. Model jest równaniem / układem równań za pomocą którego odzwierciedlamy procesy decyzyjne Opisy / modele umożliwiają analizowanie procesów decyzyjnych i pomagają w wyborze optymalnej decyzji.

6 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 6 Etapy wykorzystania metod PL w procesie podejmowania decyzji Ogół prac związanych z wykorzystaniem metod programowania liniowego w procesie podejmowania decyzji podzielić można na cztery etapy: I budowa modelu (zadania) PL, II rozwiązanie zadania PL III weryfikacja modelu i rozwiązania IV opracowanie systemu kontroli

7 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 7 Szczegóły etapu I W etapie I powinno się sformułować: co jest celem działania o czym mamy decydować jakie są warunki w jakich działamy jakie środki wchodzą w grę kryterium umożliwiające ocenę decyzji Następnie budujemy zadanie PL rozpoczynając od stworzenia listy zmiennych decyzyjnych, zbudowania funkcji celu i zespołu równań / nierówności określających zbiór decyzji dopuszczalnych.

8 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 8 Przykład 1 Zakład wytwarza dwa produkty A i B o cenie 3 i 4 zł. Należy opracować dzienny plan produkcji tak, aby wartość produkcji liczona w cenach zbytu była możliwie największa. Produkcja jest limitowana przez surowiec podstawowy i czas pracy maszyn. Max. dzienny czas pracy maszyn minut. Dzienny limit surowca 350 kg. Sztuka wyrobu A wymaga 1 min pracy maszyny, natomiast sztuka wyrobu B – 2 min. Zużycie / sztukę wyrobu A i B - 1 kg. Jednostkowy zysk za wyrób A - 2 zł, wyrób B - 1 zł. Zysk min zł.

9 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 9 Etap I - budowa modelu 1. Co jest celem działania? - produkcja wyrobów A i B 2. o czym chcemy decydować? - o rozmiarach dziennej produkcji wyrobów A i B. 3. Jakie są warunki - patrz opis 4. Jakie mamy środki? - surowiec podstawowy, praca maszyn 5. Jakie jest kryterium oceny planu? - maksymalna wartość produkcji w cenach zbytu

10 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 10 Sformułowania zadania lista zmiennych decyzyjnych x1 - dzienna produkcja wyrobu A [sztuki] x2 - dzienna produkcja wyrobu B [sztuki] funkcja celu (wartość produkcji w cenach zbytu) Ograniczenia określające zbiór planów dopuszczalnych

11 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 11 Przykład 2 Przedsiębiorstwo produkuje dwa wyroby W1 i W2. W procesie produkcji tych wyrobów zużywa się wiele środków, spośród których dwa są limitowane. Limity te wynoszą: środek I – jedn., natomiast środek II – jedn. Nakłady limitowanych środków na jednostkę wyrobów W1 i W2 podano w tablicy 1. Środki produkcjiJednostkowe nakłady W1W2 I1624 II1610

12 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 12 Przykład 2 cd Wiadomo, że zdolności produkcyjne jednego z wydziałów, stanowiącego wąskie gardło procesu produkcyjnego, nie pozwalają produkować więcej niż 3000 szt. wyrobów W1 oraz 4000 szt. wyrobów W2. Optymalne proporcje produkcji kształtują się odpowiednio jak 3:2. Cena sprzedaży (w zł) jednostki wyrobu W1 wynosi 30, a wyrobu W2 – 40. Ustalić optymalne rozmiary produkcji wyrobów gwarantujące maksymalizację przychodu ze sprzedaży przy istniejących ograniczeniach. W rozwiązaniu zastosować metodę geometryczną.

13 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 13 Rozwiązanie Na początek należy zbudować model matematyczny opisujący przedstawioną powyżej sytuację. Niech x1 oznacza ilość produkcji wyrobu W1, a x2 – ilość produkcji wyrobu W2. Biorąc pod uwagę limity środków produkcji I i II, mamy dwa pierwsze ograniczenia.

14 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 14 Rozwiązanie cd Trzeci warunek opisujący optymalne proporcje przybierze postać: Warunki brzegowe przybiorą postać: Funkcja celu Wielkość produkcji nie może być ujemna. Z drugiej strony mamy ograniczenia produkcji dla wyrobu I i II – wąskie gardła

15 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd x2 x1 (1) (2) (3) (4) (5) Zbiór rozwiązań dopuszczalnych znajduje się na prostej nr (3). Im dalej od pkt (0,0) tym wartość funkcji celu będzie większa. Należy sprawdzić jakie będą współrzędne, pkt przecięcia prostych 3 i 4 Znając pkt przecięcia proszę policzyć wartości zmiennych x1 i x2 oraz wartość funkcji celu.

16 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 16 Przykład 3 Przedsiębiorstwo produkuje dwa wyroby W1 i W2. Ograniczeniem w procesie produkcji są zapasy trzech surowców: S1, S2, S3. Ustalić rozmiary produkcji wyrobów W1 i W2, które zagwarantują maksymalny przychód ze sprzedaży przy istniejących zapasach. SurowceZużycie surowca (w kg) Na 1 sztukę wyrobu Zapas surowca (w kg) W1W2 S1 S2 S , Cena (zł)3020

17 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 17 Rozwiązanie W modelu występują dwie zmienne decyzyjne x1, x2 określające wielkość produkcji odpowiednio wyrobu W1 i W2. Ponieważ w modelu występują tylko dwie zmienne decyzyjne, można go rozwiązać metodą geometryczną – układ współrzędnych x1, x2

18 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 18 Model matematyczny Funkcja celu

19 Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 19 Rozwiązanie graficzne - step by step x2x2 x1x1 (2) (3) (4) Zbiór rozwiązań dopuszczalnych wyznaczony jest przez wielobok. Max wartość funkcji celu znajduje się w jednym z wierzchołków. Należy obliczyć współrzędne wierzchołków. Następnie policzyć wartość funkcji celu dla każdego wierzchołka. Poszukać wartości max.


Pobierz ppt "Paweł Górczyński, Badania operacyjne, Ćwiczenia 1, Slajd 1 Badania operacyjne Paweł Górczyński"

Podobne prezentacje


Reklamy Google