Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

,,Triki matematyczne Projekt przygotowali: Deutschmann Ksenia Krauze Dawid Mrozek Gliszczyński Dominik Czernyk Damian Rudnik Jarosław pod opieką pani mgr.

Podobne prezentacje


Prezentacja na temat: ",,Triki matematyczne Projekt przygotowali: Deutschmann Ksenia Krauze Dawid Mrozek Gliszczyński Dominik Czernyk Damian Rudnik Jarosław pod opieką pani mgr."— Zapis prezentacji:

1 ,,Triki matematyczne Projekt przygotowali: Deutschmann Ksenia Krauze Dawid Mrozek Gliszczyński Dominik Czernyk Damian Rudnik Jarosław pod opieką pani mgr Teresy Mysik

2 Przygotowane triki matematyczne Gdzie jest błąd w rozumowaniu? Jak liczyć,,inaczej? Złudzenia optyczne Przygotowując nasz projekt wykorzystaliśmy źródła:

3 Gdzie jest błąd w rozumowaniu? Pewnego dnia trzech podróżnych zatrzymało się w jednym z hoteli w Londynie. W recepcji powiedziano im, że pokój kosztuje 30 dolarów za noc. Każdy wyłożył więc po 10 dolarów i udał się do pokoju. Chwilę potem recepcjonista zorientował się, że powinien pobrać jedynie 25 dolarów. Poprosił więc boja hotelowego, by oddał klientom 5 dolarów. Jadąc windą, boj oddał się rozmyślaniom: 5 dolarów nie dzieli się równo na trzy, oddam więc im po 1 dolarze, a resztę - 2 dolary zatrzymam sobie za usługę. Tak też zrobił. W rezultacie każdy z gości zapłacił po 9 dolarów. Wędrujące dolary

4 9dol. – cena pokoju dla 1osoby 3x9dol. =27dol. –cena pokoju dla 3 osób 2-liczba dolarów, które wziął boj 27+2=29 [dol.] 29=30 ???[dol.] Gdzie podział się brakujący dolar ? Wędrujące dolary Liczymy: Gdzie jest błąd w rozumowaniu?

5 1zł=1zł 1zł=100 gr 100gr=10gr x 10gr 10gr=0.1zł 1zł=0.1zł x 0.1zł 1zł=0.01zł ? Sofizmaty- błędy logiczne popełnione świadomie, by osiągnąć efekt w postaci rozumowania pozornie poprawnego, prowadzącego do pozornie prawidłowych wniosków. Gdzie jest błąd w rozumowaniu?

6 1zł=1zł 1zł=100 gr 100gr=10gr x 10gr (uwaga na jednostki: gr=gr 2 ?) 10gr=0.1zł 1zł=0.1zł x 0.1zł (uwaga na jednostki: zł=zł 2 ?) 1zł=0.01zł ? Czy zwróciłeś uwagę na wskazane poniżej błędy? Gdzie jest błąd w rozumowaniu?

7 Jak liczyć,,inaczej? Jakow Trachtenberg (ur r., zm r.) – rosyjski matematyk, twórca metody pamięciowego wykonywania podstawowych operacji arytmetycznych, znanej jako metoda lub system Trachtenberga. Gdy wybuchła rewolucja październikowa, życie Trachtenberga stało się zagrożone z powodu jego poglądów politycznych i współpracy z caratem. Inżynier opuścił ojczyznę i udał się do Niemiec. Trachtenberg był przeciwnikiem nazistów i wypowiadał się przeciwko ich planom. W 1938 roku naziści wkroczyli do Austrii i Trachtenberg trafił do obozu koncentracyjnego. By zachować zdrowie psychiczne, zajął się matematyką, a konkretnie podstawowymi operacjami arytmetycznymi. Tam właśnie powstał jego system pamięciowego mnożenia. Po 7 latach został uratowany przez żonę, która przekupiła biżuterią strażników obozu. Po wojnie zamieszkał w Szwajcarii, gdzie w r założył Instytut Matematyczny w Zurychu. Kilka słów o Jakowie Trachtenbergu

8 Jak liczyć,,inaczej? Uwagi wstępne: 1.Słowem sąsiad opisujemy cyfrę znajdującą się po prawej stronie danej cyfry. Gdy dana cyfra nie ma sąsiada, przyjmujemy 0. 2.Każdej liczbie, na której wykonujemy mnożenie, dodajemy z przodu 0 (np. liczbę 3461, zapisujemy jako 03461). 3.Jako połowę danej cyfry rozumiemy jej połowę zaokrągloną do całości w dół, np. połowa 9 to 4, połowa 1 to 0, połowa 0 to 0. System Trachtenberga

9 Jak liczyć,,inaczej? Przykład : 7117x12 1.Rozważamy liczbę Zgodnie z uwagą 2 zapisujemy ją jako Zapisujemy cyfry danej liczby pionowo, zaczynając od ostatniej cyfry i pamiętając o zerze. 3.Mnożymy każdą cyfrę przez 2 i dodajemy do niej sąsiada. 4.Jeżeli otrzymamy w jakimś miejscu liczbę większą od 10, np. 12, to zostawiamy 2, a jedynkę przesuwamy niżej. 7 = 7 x (brak sąsiada) = 1/4 (czwórka zostaje, jedynka idzie w dół) 1 = 1 x (sąsiad) + 1 (ta z góry) = 1/0 1 = 1 x (sąsiad) + 1 (ta z góry) = 4 7 = 7 x (sąsiad) = 1/5 0 = 0 x (sąsiad) + 1 (ta z góry) = 8 Wynik odczytujemy, zaczynając od dołu: Przykład dla Ciebie: 3254x12=? System Trachtenberga – mnożenie przez 12

10 Jak liczyć,,inaczej? Przykład 75*75 Metoda: Znajdujemy kwadrat ostatniej cyfry 5*5=25 to liczba a Mnożymy cyfrę dziesiątek danej liczby przez liczbę o 1 od niej większą 7*8=56 to liczba b Ustawiamy liczby obok siebie w kolejności ba czyli 75*75=5625 Sprawdź słuszność tej metody na przykładach 15*15 65*65 235*235 Co Ty na to? Podnoszenie liczby do kwadratu gdy liczba kończy się na 5 sposób znaleziony w Internecie (np.

11 Jak liczyć,,inaczej? Przykład 42*48 Metoda: Dopełniamy każdą z ostatnich cyfr do pełnych dziesiątek Z liczby 42 jest to 8 ( bo 10-2=8) Z liczby 48 jest to 2 ( bo 10-8=2) Mnożymy otrzymane liczby 8*2=16 to liczba a Mnożymy cyfrę dziesiątek danej liczby przez liczbę o 1 od niej większą 4*5=20 to liczba b Ustawiamy liczby obok siebie w kolejności ba czyli 42*48=2016 Sprawdź słuszność tej metody na przykładach 37*34 63*65 Co Ty na to? Mnożenie liczb 2-cyfrowych gdzie cyfra dziesiątek jest taka sama sposób znaleziony w Internecie (np.

12 Ostrzeżenie Nie wszystkie informacje podane w Internecie są wiarygodne!

13 Złudzenia Rozważamy 2 kule: piłkę i Ziemię. Sznurkiem ciasno opasuję piłkę. Jeśli teraz wydłużę sznurek o 1m i równomiernie rozłożę go wokół piłki nadając mu kształt okręgu, to oczywiście będzie odstawać od piłki. A teraz wyobraźcie sobie, że tę samą operację przeprowadzam z kulą ziemską: opasuję ją ciasno wokół równika, a potem wydłużam sznurek o 1m. W którym przypadku opaska jest luźniejsza? Czy bardziej będzie odstawać od Ziemi, czy od piłki? Piłeczka i Ziemia

14 Złudzenia Policzmy: Długość sznurka to obwód koła. O=2πr Niech r 1 - promień kuli ( piłki lub Ziemi) Długość sznurka opasującego piłkę lub Ziemię O 1 =2πr 1 Obwód zwiększam o 1m O 2 =2πr 1 +1m O 2 wyraża się również wzorem: O 2 =2πr 2 r 2 -promień nowego zwiększonego koła Mogę zapisać równanie: 2πr 2 =2πr 1 +1m/:(2π) r 2 =r 1 +1/(2π) m Stąd wynika, że promień kuli (obojętnie piłki czy Ziemi zwiększy się o 1/(2π) m 1/(2*3,14) m = 1/6,28 m 0,16 m =16cm ) Niewiarygodne. Z obliczeń wynika, że sznurek będzie jednakowo odstawał i od piłki, i od Ziemi, to jest o ok. 16cm. Piłeczka i Ziemia

15 Złudzenia statyczne Który odcinek jest dłuższy?Który kwadrat jest większy?

16 Złudzenia dynamiczne

17

18 Złudzenia optyczne Przecież oba trójkąty są prostokątne, a ich przyprostokątne mają długość 13 i 5 (kratek)! Jak to jest możliwe?

19 Złudzenia optyczne Przyjrzyjmy się jeszcze raz trójkątowi ABC, a szczególnie jego fragmentowi – brązowemu trójkątowi prostokątnemu o przyprostokątnych długości 8 i 3.

20 Złudzenia optyczne I jeszcze raz dokładnie w powiększeniu. Okazuje się, że jedna przyprostokątna jest nieco dłuższa niż 3.

21 Złudzenia optyczne Na pierwszym rysunku przyprostokątna brązowego trójkąta ma długość nieco większą niż 3, na drugim rysunku obok dokładnie 3! Podobnie moglibyśmy przeanalizować trójkąt zielony. Te dwa rysunki nie przedstawiają tej samej figury!

22 Gdzie jest błąd w rozumowaniu? (c.d) Do hotelu z poprzedniego zadania trafiły dwie panie. Historia była podobna: zapłaciły 30 dolarów za pokój, każda wysupłała po 15 dolarów. Kiedy recepcjonista zorientował się, że policzył o 5 dolarów za dużo, kazał bojowi oddać nadpłatę. Ten znowu oddał klientkom tylko po 1 dolarze, a resztę czyli 3 dolary zatrzymał sobie. W rezultacie każda z pań zapłaciła za noc w hotelu 14 dolarów. Wędrujące dolary

23 14 dol. – cena pokoju dla 1osoby 2x14dol. =28dol. –cena pokoju dla 2 osób 3-liczba dolarów, które wziął boj 28+3=31 [dol.] 31=30 ???[dol.] Ponieważ na początku było tylko 30 dolarów, to mamy odpowiedź: Nadmiarowy dolar przywędrował tutaj z poprzedniego przykładu! Co o tym sądzisz? Wędrujące dolary Liczymy: Gdzie jest błąd w rozumowaniu? (c.d)

24 Dziękujemy bardzo za obejrzenie prezentacji. Pozdrawiamy uczniowie klasy IIa


Pobierz ppt ",,Triki matematyczne Projekt przygotowali: Deutschmann Ksenia Krauze Dawid Mrozek Gliszczyński Dominik Czernyk Damian Rudnik Jarosław pod opieką pani mgr."

Podobne prezentacje


Reklamy Google