Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Materiały pochodzą z Platformy Edukacyjnej Portalu www.szkolnictwo.pl Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu www.szkolnictwo.pl.

Podobne prezentacje


Prezentacja na temat: "Materiały pochodzą z Platformy Edukacyjnej Portalu www.szkolnictwo.pl Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu www.szkolnictwo.pl."— Zapis prezentacji:

1 Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu mogą być wykorzystywane przez jego Użytkowników wyłącznie w zakresie własnego użytku osobistego oraz do użytku w szkołach podczas zajęć dydaktycznych. Kopiowanie, wprowadzanie zmian, przesyłanie, publiczne odtwarzanie i wszelkie wykorzystywanie tych treści do celów komercyjnych jest niedozwolone. Plik można dowolnie modernizować na potrzeby własne oraz do wykorzystania w szkołach podczas zajęć dydaktycznych.

2 ...znajdowanie nowych pewników o charakterze oczywistości będzie zawsze najgłówniejszą dźwignią rozwoju matematyki. Hugo Steinhaus

3 PROPORCJONALNOŚĆ. Proporcjonalność to coś, czym spotykasz się każdego dnia. Modele matematyczne opisujące proporcjonalność prostą i proporcjonalność odwrotną pozwalają szybko rozwiązywać wiele problemów rachunkowych życia codziennego.

4 PROPORCJA. Proporcją nazywamy równość dwóch ilorazów (dwóch ułamków) b 0 i d 0 W każdej proporcji iloczyn wyrazów skrajnych jest równy iloczynowi wyrazów środkowych a d = b c

5 PROPORCJA. PRZYKŁADY. Rozwiąż równanie: Jest to proporcja (równość dwóch ułamków) a więc iloczyn wyrazów skrajnych musi być równy iloczynowi wyrazów środkowych. Mnożymy na krzyż i zapisujemy równość między iloczynami: 3 · (2 – 5x) = 5 · (2x – 1) 6 – 15x = 10x – 5 -15x – 10x = -5 – 6 -25x = -11 /: (-25) x =

6 WIELKOŚCI WPROST PROPORCJONALNE. O dwóch wielkościach mówimy, że są wprost proporcjonalne, jeśli wraz ze wzrostem jednej, druga rośnie tyle samo razy. PRZYKŁADY. Liczba kupionych lizaków i kwota, którą należy za nie zapłacić – wraz ze wzrostem liczby kupionych lizaków, tyle samo razy wzrasta kwota, którą należy zapłacić. Odległość na mapie i w terenie – im dłuższy odcinek na mapie, tym proporcjonalnie większa odległość w terenie.

7 PRZYKŁADY WIELKOŚCI WPROST PROPORCJONALNYCH. Liczba szklanek i objętość wody, którą możemy do nich wlać – gdy zwiększymy ilość szklanek objętość wody, która się w nich zmieści wzrośnie tyle samo razy. Czas jady skuterem, ze stałą prędkością i przebyta odległość – im dłużej jedziesz, tym proporcjonalnie dłuższą trasę przebywasz. Długość promienia i długość okręgu – jeśli zwiększymy promień okręgu, jego długość zwiększy się tyle samo razy.

8 PROPORCJONALNOŚĆ PROSTA. Zależność między dwiema wielkościami, których iloraz jest stały nazywamy proporcjonalnością prostą. Liczbę a 0 nazywamy współczynnikiem proporcjonalności, a o wielkościach x i y mówimy, że są wprost proporcjonalne. UWAGA. Z powyższej definicji wynika, że zależność między wielkościami wprost proporcjonalnymi możemy zapisać przy pomocy wzoru y = ax.

9 WYKRES PROPORCJONALNOŚCI PROSTEJ. Skoro znamy wzór opisujący zależność między wielkościami wprost proporcjonalnymi, możemy też zobaczyć jak taka zależność wygląda. Oto wykres proporcjonalności prostej dla a = 0,5. y = 0,5x

10 PRZYKŁADOWE ZADANIA. ZADANIE 1. Sprawdź, czy wielkości podane w tabelce są wprost proporcjonalne. Musimy sprawdzić, czy iloraz podanych wielkości jest stały, liczymy więc y : x dla każdej pary: 2 : 5 = 0,4 8 : 20 = 0,4 40 : 100 = 0,4 0,5 : 1,25 = 0,4 4 : 10 = 0,4 x ,2510 y28400,54

11 PRZYKŁADOWE ZADANIA. ZADANIE 1 – ciąg dalszy. Za każdym razem wychodzi ta sama liczba, a więc iloraz podanych wielkości jest stały – są wprost proporcjonalne. UWAGA. Gdybyśmy w chociaż jednym dzieleniu otrzymali inną liczbę, podane wielkości nie byłyby wprost proporcjonalne. Powyższe zadanie można rozwiązać wykonując dzielenie x : y – zasada jest taka sama, ale dzieląc y : x otrzymujemy współczynnik proporcjonalności, w tym zadaniu a = 0,4 (wzór wyglądałby tak: y = 0,4x).

12 PRZYKŁADOWE ZADANIA. ZADANIE 2. Uzupełnij tabelkę tak, aby podane w niej wielkości były wprost proporcjonalne. Należy wypełnić tabelkę tak, aby iloraz wielkości był stały. Zwróćmy najpierw uwagę na kolumnę w której podane są obie wartości, możemy z niej wyliczyć współczynnik proporcjonalności, wykonujemy działanie y : x 12 : 10 = 1,2 x1034 y121,272

13 PRZYKŁADOWE ZADANIA. ZADANIE 2 – ciąg dalszy. Wolne komórki tabeli należy wypełnić tak, aby y : x = 1,2 y : 3 = 1,2 / · 3 y = 3,6 1,2 : x = 1,2 x = 1 x1034 y121,272

14 PRZYKŁADOWE ZADANIA. ZADANIE 3 – ciąg dalszy. 72 : x = 1,2 x = 72 : 1,2 x = 60 y : 4 = 1,2 / · 4 y = 4,8 Uzupełniona tabela powinna wyglądać tak: x y123,61,2724,8

15 PRZYKŁADOWE ZADANIA. ZADANIE 3. Za 5 batonów zapłacono 6 zł 25 gr. Ile można kupić takich batonów za 10 zł? Jaka jest cena 12 takich batonów? Wielkości występujące w tym zadaniu są wprost proporcjonalne (jeśli kupimy więcej batonów zapłacimy za nie proporcjonalnie więcej), możemy więc do rozwiązania tego zadania użyć proporcji. Oznaczmy: x – kwota jaką należy zapłacić za batony y – ilość kupionych batonów

16 PRZYKŁADOWE ZADANIA. ZADANIE 3 – ciąg dalszy. Zapisujemy i rozwiązujemy proporcje zgodne z treścią zadania: Za 10 zł kupimy 8 batonów a 12 takich batonów kosztuje 15 zł. 6,25y = 50 / : 6,25 y = 8 5x = 75 /: 5 x = 15

17 UWAGA. Zawszę zwracaj uwagę z jakimi wielkościami masz do czynienia – wprost, czy odwrotnie proporcjonalnymi. Proporcji możemy używać tylko do zadań, w których występują wielkości wprost proporcjonalne.


Pobierz ppt "Materiały pochodzą z Platformy Edukacyjnej Portalu www.szkolnictwo.pl Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu www.szkolnictwo.pl."

Podobne prezentacje


Reklamy Google