Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

1 Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa) Opracowanie dr Mirosław Kachniewski Przemysław Wasilewski.

Podobne prezentacje


Prezentacja na temat: "1 Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa) Opracowanie dr Mirosław Kachniewski Przemysław Wasilewski."— Zapis prezentacji:

1

2 1 Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa) Opracowanie dr Mirosław Kachniewski Przemysław Wasilewski

3 2 Jacy są ludzie? Lenistwo wymusza kreatywność! leniwikreatywni Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

4 3 Jak być leniwym? Co trzeba zrobić najpierw, żeby później nic nie robić? Do tego potrzebne są pieniądze. Przydaje się też znajomość matematyki finansowej. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

5 4 Matematyka finansowa odejmowania Jest dziedziną bardzo prostą. Wymaga jedynie umiejętności: dodawania mnożenia dzielenia potęgowania Znając jedynie podstawowe działania można dokonać interesujących obliczeń. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

6 5 Przykład 1 – procent składany Lokujemy w banku 1200 zł. Ile otrzymamy za rok? K - kapitał początkowy i - roczna stopa procentowa n - liczba okresów oszczędzania (tutaj: liczba lat) Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

7 6 Przykład 1 – procent składany (2) Lokata roczna, oprocentowanie 5% rocznie Po roku otrzymamy 1260 zł. Po dwudziestu latach otrzymamy 3183,96 zł. Lokata 20-letnia, oprocentowanie 5% rocznie Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

8 7 Przykład 2 – procent składany (1) Lokujemy w banku 1200 zł. Ile otrzymamy za rok przy kapitalizacji co miesiąc? K - kapitał początkowy i - stopa procentowa n - liczba okresów oszczędzania (tutaj: liczba lat) m - liczba okresów kapitalizacji w okresie oszczędzania (tutaj: liczba miesięcy) Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

9 8 Przykład 2 – procent składany (2) Lokata miesięczna, utrzymywana przez rok, oprocentowanie 5% rocznie Po roku otrzymamy 1261,40 zł. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

10 9 Przykład 2 – procent składany (3) Lokata miesięczna, utrzymywana przez 20 lat, oprocentowanie 5% rocznie Po dwudziestu latach otrzymamy 3255,17 zł. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

11 10 Podsumowanie – procent składany Po roku różnica wynosi 1,40 zł (o 0,11% więcej), ale po dwudziestu latach już 71,21 zł (o 2,24% więcej)! Im częściej następuje kapitalizacja, tym szybciej rosną oszczędności. Lokata roczna12 lokat miesięcznych Kapitalizacja raz w rokuKapitalizacja raz w miesiącu 1 260,00 zł1 261,40 zł Oprocentowanie = 5% rocznie 3 183,96 zł3 255,17 zł20 lat 1 rok Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

12 11 Przykład – wartość przyszła strumienia pieniędzy (1) Co miesiąc odkładamy w banku 100 zł. Ile otrzymamy za rok? i - roczna stopa procentowa n - liczba okresów oszczędzania j - numer kolejny okresu oszczędzania Założenie: Zaczynamy nie posiadając oszczędności. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

13 12 Przykład – wartość przyszła strumienia pieniędzy (2) Co miesiąc odkładamy w banku 100 zł. Ile otrzymamy za rok? (oprocentowanie = 5% rocznie) Otrzymamy 1233 zł. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

14 13 Po co te obliczenia? A kiedy umrzemy? Na tym świecie nic nie jest pewne, oprócz śmierci i podatków. – B. Franklin, 1789 Wiemy, jakie podatki płacimy. Ile pieniędzy będziemy potrzebowali? Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

15 14 Kiedy umrzemy? Tablica trwania życia 2004 (Źródło: GUS) Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

16 15 Kiedy umrzemy? Jeżeli wiemy, jak długo będziemy żyli, możemy obliczyć, ile będziemy potrzebowali pieniędzy. Przeciętny osiemnastoletni mężczyzna umrze w wieku 72 lat. Przeciętna osiemnastoletnia kobieta dożyje 80 lat. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

17 16 Ile potrzebujemy pieniędzy? (1) Wiemy już, jak długo będziemy żyli (M-72, K-80). Musimy jeszcze tylko określić, ile chcemy miesięcznie wydawać. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

18 17 Ile potrzebujemy pieniędzy? (2) Chcemy wydawać 1000 zł miesięcznie. Chcemy nic nie robić w wieku 40 lat. Mężczyzna musi zgromadzić 384 tys. zł, a kobieta 480 tys. zł. Tak mówi matematyka. Czy na pewno? łz zł zł zł Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

19 18 Ile potrzebujemy pieniędzy? (3) Wiemy już, ile pieniędzy potrzebujemy. Zaczynamy oszczędzać w wieku 20 lat. Tak mówi matematyka. Czy na pewno? Ile miesięcznie musimy odkładać, by zebrać odpowiednią kwotę? zł zł1600 zł zł 2012 Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

20 19 Ile potrzebujemy pieniędzy? (4) Mężczyzna musi zgromadzić 384 tys. zł, a kobieta 480 tys. zł, by w wieku 40 lat zapewnić sobie dożywotnią 1000-złotową rentę. Tak mówi matematyka. Czy na pewno? Co na to matematyka finansowa? Aby zebrać odpowiednią kwotę, mężczyzna musi przez 20 lat odkładać 1600 zł miesięcznie, a kobieta 2000 zł miesięcznie. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

21 20 Ile potrzebujemy pieniędzy? (5) Na szczęście zgromadzone pieniądze będą wciąż pracować! Musimy więc oszczędzić jedynie taką kwotę, która będzie zapewniała co miesiąc odsetki w wysokości 1000 zł. Matematyka finansowa Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

22 21 Ile potrzebujemy pieniędzy? (6) Roczna stopa procentowa (i) = 5% Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

23 22 Ile potrzebujemy pieniędzy? (7) złK K % Musimy oszczędzić jedynie zł, by co miesiąc móc wypłacać sobie 1000 zł bez utraty kapitału. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

24 23 Non omnis moriar? Horacy (Pieśni 3, 30, 6) Ale po co nam zł w chwili śmierci? Czy nie lepiej wyjść na zero? Znów pomaga nam matematyka finansowa. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

25 24 Ile potrzebujemy pieniędzy? Wartość początkowa renty płatnej z dołu (1) K 0 - kapitał początkowy a - wypłacana kwota i - stopa procentowa za okres kapitalizacji n - liczba okresów wypłaty (tutaj: liczba miesięcy) Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

26 25 Ile potrzebujemy pieniędzy? Wartość początkowa renty płatnej z dołu (2) Rachunek dla mężczyzny: n = 384 (32 lata x 12 miesięcy) Rachunek dla kobiety: n = 480 (40 lat x 12 miesięcy) Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa) a = 1000 i = 5%/12=0,4167%

27 26 Ile potrzebujemy pieniędzy? Wartość początkowa renty płatnej z dołu (3) Mężczyzna musi zgromadzić ,5 zł, by w wieku 40 lat zapewnić sobie dożywotnią rentę w wysokości 1000 zł. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

28 27 Ile potrzebujemy pieniędzy? Wartość początkowa renty płatnej z dołu (4) Kobieta musi zgromadzić ,3 zł, by w wieku 40 lat zapewnić sobie dożywotnią rentę w wysokości 1000 zł. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

29 28 Jak oszczędzić taką kwotę? Znajomy wzór! (1) Wartość przyszła strumienia pieniędzy (kapitał początkowy = 0) Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

30 29 Jak oszczędzić taką kwotę? Znajomy wzór! (2) Wynik obliczeń Mężczyzna musi odkładać przez 20 lat po 464 zł, kobieta po 503 zł, aby w wieku 40 lat zacząć wypłacać sobie dożywotnią rentę w wysokości 1000 zł. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

31 30 Podsumowanie (1) W wieku 20 lat rozpocząć oszczędzanie i co miesiąc odkładać 464 zł (mężczyzna) lub 503 zł (kobieta)! Co robić, by nic nie robić i w wieku 40 lat zacząć wypłacać sobie dożywotnią rentę w wysokości 1000 zł? Rozwiązanie dała nam matematyka finansowa. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

32 31 Podsumowanie (2) 1) Gdy kapitał nie jest chroniony, z każdą wypłatą zmniejsza się zaoszczędzona kwota. 2) Gdy kapitał jest chroniony, zaoszczędzona kwota nie zmniejsza się – wypłacamy tylko odsetki. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)

33 32 Ale uwaga! Podane przeciętne długości życia są jedynie wartościami średnimi dla całości populacji! Obliczenia wykonano przy nominalnej rocznej stopie procentowej w wysokości 5%. Autorzy nie biorą odpowiedzialności za ewentualne dłuższe bądź krótsze życie słuchaczy. W warunkach inflacji realna wartość wypłacanego 1000 zł będzie niższa niż wartość tej kwoty obecnie. W celu zachowania realnej wartości wypłacanych środków na takim samym poziomie, realna roczna stopa procentowa powinna wynosić 5%. Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa)


Pobierz ppt "1 Co robić, żeby nic nie robić (i jak w tym pomaga matematyka finansowa) Opracowanie dr Mirosław Kachniewski Przemysław Wasilewski."

Podobne prezentacje


Reklamy Google