Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Rozdział III - Inflacja Wstęp Inflacja – jest zjawiskiem wzrostu cen towarów i usług w czasie. Wielkość inflacji jest określana przy pomocy stopy inflacji.

Podobne prezentacje


Prezentacja na temat: "Rozdział III - Inflacja Wstęp Inflacja – jest zjawiskiem wzrostu cen towarów i usług w czasie. Wielkość inflacji jest określana przy pomocy stopy inflacji."— Zapis prezentacji:

1 Rozdział III - Inflacja Wstęp Inflacja – jest zjawiskiem wzrostu cen towarów i usług w czasie. Wielkość inflacji jest określana przy pomocy stopy inflacji. Wyprowadźmy następujące oznaczenia: c p – aktualna cena towaru c F - przyszła cena towaru i – stopa inflacji Stopa inflacji jest definiowana jako:

2 3.1 Oprocentowanie proste – stopa stała W przypadku oprocentowania prostego kapitału P na N lat przy stałej stopie r otrzymujemy wartość nominalną F = P · (1 + r ·N ) (3.3) Podstawiając (3.3) do (3.4) wyznaczamy: (3.4) We wzorze (3.4) należy przyjąć, że i r jest równoważną stopą inflacji w okresie N lat. Na ogół dane są roczne stopy inflacji: i 1,...,i n,..., i N dlatego do wzoru (3.4) należy podstawić wzór na równoważną roczną stopę inflacji i r = (1 +i 1 )*...* (1+i N ) - 1 – wówczas otrzymamy: (3.5) R - realny kapitał

3 Taką samą realną wartość przyszłą otrzymamy przy realnej stopie procentowej, czyli R = P· (1 + q ·N ) (3.6) Porównując prawe strony (3.5) i (3.6) otrzymamy realną stopę procentową. (3.7) W szczególnym przypadku dla jednego roku otrzymamy: (3.8) Czyli (3.9) Ze wzoru ( 3.9) widać,że realna stopa procentowa q nie jest różnicą pomiędzy nominalną stopą procentową i stopą inflacji.

4 3.2 Oprocentowanie proste – stopa zmienna Dla przypadku oprocentowania prostego ze zmienną stopą procentową postępujemy analogicznie jak w przypadku oprocentowanie prostego ze stopą stałą. Poprzez analogię do wzoru (3.10) R = P· (1 + q ·N ) (3.10) otrzymamy (3.11) q - realna stopa procentowa R - realny kapitał

5 3.3 Oprocentowanie składane – stopa stała Lokując aktualny kapitał P na N lat przy rocznej stopie procentowej r otrzymamy w przypadku oprocentowania składanego ze stałą stopą r. F = P · (1 + r) N (3.12) Podstawiając odpowiednio wartości nominalne (3.12) do wzoru (3.13) otrzymamy: dla stałej stopy procentowej (3.14) Dla tego przypadku można wyznaczyć równoważną realną stopę procentową :

6 dla stałej stopy nominalnej stopę realną wyznaczamy z równania (3.15) skąd; (3.16) otrzymamy wzór na realną stopę

7 3.4 Oprocentowanie składane – stopa zmienna Inflacja Lokując aktualny kapitał P na N lat przy rocznej stopie procentowej r otrzymamy w przypadku oprocentowania składanego ze zmienną stopą r Dla zmiennych stóp procentowych: r 1,...,r n,...,r N F = P · (1 + r 1 ) · … ·(1 + r N ) (3.17) Podstawiając odpowiednio wartości nominalne (3.17) do (3.13) otrzymamy: dla zmiennej stopy (3.18)

8 Dla tego przypadku można wyznaczyć równoważną realną stopę procentową q : dla zmiennej stopy nominalnej otrzymamy stopę realną


Pobierz ppt "Rozdział III - Inflacja Wstęp Inflacja – jest zjawiskiem wzrostu cen towarów i usług w czasie. Wielkość inflacji jest określana przy pomocy stopy inflacji."

Podobne prezentacje


Reklamy Google