Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

1 Przetwarzanie i rozpoznawanie obrazów Filtracja obrazów.

Podobne prezentacje


Prezentacja na temat: "1 Przetwarzanie i rozpoznawanie obrazów Filtracja obrazów."— Zapis prezentacji:

1 1 Przetwarzanie i rozpoznawanie obrazów Filtracja obrazów

2 2 Definicje sąsiedztwa punktów obrazu: Sąsiedztwo cztero-spójne Sąsiedztwo ośmio-spójne Sąsiedztwo dalsze Najbliższe otoczenie [3 3] analizowanego punktu f(x,y).

3 3 Filtracja liniowa w dziedzinie przestrzennej: Dwuwymiarowa operacja splotu dla tzw. maski h oraz macierzy określającej obraz: stąd: g(x,y) = f(x-1,y-1)·h(-1,-1) + f(x,y-1)·h(0,-1) + f(x+1,y-1)·h(1,-1) + f(x-1,y)·h(-1,0) + f(x,y)·h(0,0) + f(x+1,y)·h(1,0) + f(x-1,y+1)·h(-1,1) + f(x,y+1)·h(0,1) + f(x+1,y+1)·h(1,1)

4 4 Efekty brzegowe: obraz oryginalny obraz po filtracji

5 5 Efekty brzegowe - jedno z rozwiązań: pomija się pierwszy rząd, pierwszą kolumnę, ostatni rząd i kolumnę obrazu oryginalnego (NxN)- w efekcie obraz po filtracji jest mniejszy: (N-1)x(N-1)

6 6 Filtry dolnoprzepustowy: Tablica mnożników filtru: oryginałdolnoprzepustowy Aby zachować wartość średnią obrazu, suma elementów maski musi być równa 1. Wszystkie mnożniki muszą być wartościami dodatnimi.

7 7 Filtr dolnoprzepustowy uśredniający: transmitancja filtru uśredniającego: dla maski h 1 3x3dla maski h 2 5x5

8 8 Zastosowania filtru uśredniającego: oryginał3x35x5

9 9 Wynik działania filtru dolnoprzepustowego: Zastosowania filtru dolnoprzepustowego cd: Obraz oryginalny:

10 10 Filtr dolnoprzepustowy Gaussa:

11 11 Filtr dolnoprzepustowy Gaussa: oryginałpo filtracji

12 12 Filtry górnoprzepustowy : Tablica mnożników filtru: oryginałgórnoprzepustowy Aby wyeliminować składową stałą z obrazu, suma elementów maski musi być równa 0. Mnożniki mogą być dodatnie lub ujemne.

13 13 Działanie filtrów górnoprzepustowych: obraz oryginalny obraz po filtracji górnoprzepustowej

14 14 Zastosowania filtrów górnoprzepustowych: obraz rozmytyobraz po filtracji górnoprzepustowej, z zachowaniem wartości średniej

15 15 Filtracja nieliniowa w dziedzinie przestrzennej: Filtr medianowy: Mediana dzieli zbiór na dwie równoliczne części. Ma wartość większą (bądź równą) od połowy jego elementów oraz ma wartość mniejszą (bądź równą) od połowy jego elementów.

16 16 Porównanie filtrów medianowego i uśredniającego:

17 17 Detekcja brzegów: Brzegiem nazywamy granice pomiędzy dwoma obszarami o różnych jasnościach. Detekcja brzegów obszarów pozwala na identyfikację położenia obiektów w obrazie. Z tego też względu metody detekcji brzegów należą do najważniejszych narzędzi w przetwarzaniu i analizie obrazów. Większość metod detekcji brzegów bazuje na wyznaczaniu lokalnych pochodnych obrazu (tzw. operatorów gradientowych).

18 18 Przykładowy profil rozkładu jasności brzegu obrazu:

19 19 Detekcja brzegów za pomocą operatorów gradientowych:

20 20 Gradient obrazu f(x,y) w punkcie (x,y) określa wektor: Wektor gradientu wskazuje kierunek największej zmiany jasności obrazu. Długość tego wektora nazywamy gradientem i obliczamy z zależności:

21 21 Dla obrazów dyskretnych gradient jest aproksymowany różnicami jasności obrazów dla kierunku poziomego i pionowego: lub też kierunków ukośnych:

22 22 Podstawowe własności operatorów gradientowych: pierwsza pochodna obrazu może być wykorzystana do detekcji brzegu oraz jego kierunku, punkt zmiany znaku drugiej pochodnej, tj. jej miejsce zerowe (ang. zero crossing) obrazu może służyć do wyznaczenia miejsca wystąpienia brzegu. Wadą operatorów gradientowych jest uwypuklanie zakłóceń impulsowych w obrazach (może to powodować pogorszenie jakości obrazu lub detekcje fałszywych brzegów).

23 23 Detektory linii - wyglądają tak, jak linia którą próbują znaleźć. Duża wartość w środku otoczona małymi wartościami.

24 24 Maski do wykrywania narożników: gradient Wschód Zachód południowy-wschódPółnocny –Zachód

25 25 Maski Sobela: 0 stopni 90 stopni

26 26 Maski Prewitta: 0 stopni 90 stopni

27 27

28 28 Wynik działania gradientu Sobela 45 stopni Gradient Sobela: Wynik działania gradientu Sobela 0 stopni:

29 29 Analiza obrazów: metody segmentacji obrazu (obraz binarny); pomiar obiektów i ich kształtu (współczynniki kształtu, momenty geometryczne); wymiar fraktalny; szkieletyzacja; operacje morfologiczne na obrazach binarnych oraz w skali szarości.

30 30 Miejsce segmentacji w procesie rozpoznawania

31 31 Obraz po segmentacji powinien mieć następujące cechy: Obraz, powinien być jednorodny i jednolity (nie dotyczy to tekstur); Wnętrza obszarów powinny być proste bez wielu małych otworów; Obszary przylegające (graniczące ze sobą) do siebie powinny mieć inne wartości; Brzegi obszarów powinny być proste, nie poszarpane.

32 32 Segmentacja przez progowanie: x Przykładowy obraz zapisany w stopniach szarości: Fragment powyższego obrazu przedstawiony jako funkcja dwuwymiarowa y f(x,y)

33 33 Segmentacja przez progowanie cd.: Segmentacja obrazu ryżu z progiem 100: Rozciągnięty histogram oryginalnego obrazu ryżu

34 34 Inne przykłady segmentacji przez progowanie:

35 35 Przykłady nieudanej segmentacji przez progowanie: próg 40próg 55próg 75 próg 110próg 120próg 130

36 36 Przykład segmentacji przez wykrywanie krawędzi: Krawędzie po wyrównaniu histogramu Krawędzie na oryginale Krawędzie po rozciągnięciu histogramu obraz oryginalny

37 37 Przykład segmentacji przez wykrywanie krawędzi cd.: Krawędzie po przekształceniu gamma oraz filtracji medianowej Krawędzie po przekształceniu gamma Krawędzie po filtracji medianowej

38 38 Wynik działania dylatacji Operacje morfologiczne: Wynik działania erozji:


Pobierz ppt "1 Przetwarzanie i rozpoznawanie obrazów Filtracja obrazów."

Podobne prezentacje


Reklamy Google