Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Dystrybucje (delta Diraca) Teoria sygnałów Zdzisław Papir Sygnały niespełniające warunku Dirichleta Dystrybucja Delta (impuls) Diraca Właściwość próbkująca.

Podobne prezentacje


Prezentacja na temat: "Dystrybucje (delta Diraca) Teoria sygnałów Zdzisław Papir Sygnały niespełniające warunku Dirichleta Dystrybucja Delta (impuls) Diraca Właściwość próbkująca."— Zapis prezentacji:

1 Dystrybucje (delta Diraca) Teoria sygnałów Zdzisław Papir Sygnały niespełniające warunku Dirichleta Dystrybucja Delta (impuls) Diraca Właściwość próbkująca delty Diraca Inne właściwości Delty Diraca Dystrybucja grzebieniowa Transformaty Fouriera funkcji specjalnych Próbkowanie sygnałów Podsumowanie

2 Sygnały niespełniające warunku Dirichleta Teoria sygnałów Zdzisław Papir Sygnały x(t) są bardzo często wykorzystywane w dziedzinie czasu, więc wskazanym byłoby jednak podać sposób ich transformacji fourierowskiej. Rozszerzenie zbioru sygnałów, dla których istnieje trans- formata Fouriera można otrzymać korzystając z koncepcji dystrybucji.

3 Dystrybucje Teoria sygnałów Zdzisław Papir Dystrybucja D(·) przypisuje dowolnej funkcji (t) liczbę V D { (t)}: Przykłady dystrybucji:

4 Zapis całkowy dystrybucji Teoria sygnałów Zdzisław Papir Dystrybucja D(·) przypisuje dowolnej funkcji (t) liczbę V D { (t)}: Dystrybucję zapisujemy w postaci całkowej: w celu zachowania właściwości liniowości:

5 Delta Diraca (impuls Diraca) Teoria sygnałów Zdzisław Papir Delta Diraca (t) przypisuje dowolnej funkcji (t) liczbę (0): Definicja delty Diraca jest też utożsamiana z właściwością próbkującą delty Diraca.

6 Paul Adrien Maurice DIRAC ( ) Teoria sygnałów Zdzisław Papir Dirac Paul Adrien Maurice ( ), wybitny angielski fizyk- teoretyk, współtwórca mechaniki kwantowej, przewidział istnienie pozytonu i wniósł istotny wkład w rozwój elektrodynamiki kwantowej. Był profesorem uniwersytetów w Cambridge i Oksford i członkiem Royal Society. W 1933 otrzymał (wraz z E. Schrödingerem) Nagrodę Nobla za rozwinięcie mechaniki kwantowej.

7 Delta Diraca (impuls Diraca) Teoria sygnałów Zdzisław Papir

8 Właściwość próbkująca delty Diraca Teoria sygnałów Zdzisław Papir

9 Właściwość próbkująca delty Diraca Teoria sygnałów Zdzisław Papir

10 Właściwość próbkująca delty Diraca Teoria sygnałów Zdzisław Papir

11 Inne właściwości delty Diraca Teoria sygnałów Zdzisław Papir Splot sygnału z deltą Diraca Pole delty Diraca Symetria delty Diraca

12 Dystrybucja grzebieniowa Teoria sygnałów Zdzisław Papir Wykładniczy szereg Fouriera dystrybucji grzebieniowej

13 Próbkowanie sygnałów Teoria sygnałów Zdzisław Papir Zapis sygnału spróbkowanego za pomocą dystrybucji grzebieniowej

14 Transformaty Fouriera funkcji specjalnych Teoria sygnałów Zdzisław Papir Delta Diraca Sygnał stały Skok jednostkowy

15 Transformaty Fouriera funkcji specjalnych Teoria sygnałów Zdzisław Papir Sygnał harmoniczny

16 Transformaty Fouriera funkcji specjalnych Teoria sygnałów Zdzisław Papir Funkcja grzebieniowa Diraca

17 Próbkowanie sygnałów Teoria sygnałów Zdzisław Papir

18 Nadpróbkowanie Teoria sygnałów Zdzisław Papir nadpróbkowanie

19 Teoria sygnałów Zdzisław Papir N – częstotliwość graniczna Nyquista Próbkowanie krytyczne – critical sampling Próbkowanie krytyczne

20 Teoria sygnałów Zdzisław Papir Próbkowanie sygnału dolnopasmowego z częstotliwością większą od częstotliwości granicznej Nyquista umożliwia odtworzenie sygnału ciągłego z jego próbek. aliasing podpróbkowanie - undersampling Podpróbkowanie

21 Teoria sygnałów Zdzisław Papir His early theoretical work on determining the bandwidth requirements for transmitting information, as published in "Certain factors affecting telegraph speed (Bell System Technical Journal, 3, , 1924), laid the foundations for later advances by Shannon, which led to the development of information theory. In 1927 Nyquist determined that an analog signal should be sampled at regular intervals over time and at twice the frequency of the signal's bandwidth in order to be converted into an adequate representation of the signal in digital form. Nyquist published his results in the paper Certain topics in Telegraph Transmission Theory (1928). This rule is now known as the Nyquist-Shannon sampling theorem. Harry NYQUIST ( ) Harry Nyquist was an important contributor to information theory. He was born in Nilsby, Sweden. He emigrated to the USA in 1907 and entered the University of North Dakota in He received a Ph.D. in physics at Yale University in He worked at AT&T from 1917 to 1934, then moved to Bell Telephone Laboratories. As an engineer at Bell Laboratories, he did important work on thermal noise (Johnson-Nyquist noise) and the stability of feedback amplifiers.

22 Idealny filtr dolnoprzepustowy Teoria sygnałów Zdzisław Papir Odtwarzanie sygnału z próbek

23 Teoria sygnałów Zdzisław Papir Odtwarzanie sygnału z próbek Idealny filtr dolnoprzepustowy

24 Teoria sygnałów Zdzisław Papir Ortogonalny układ funkcji Sampling Układ funkcji próbkujących jest ortogonalny w przedziale (-, + ). W dowodzie korzystamy z twierdzenia Rayleigha:

25 Teoria sygnałów Zdzisław Papir Ortogonalny układ funkcji Sampling Szereg Kotielnikowa-Shanona: jest szeregiem Fouriera względem układu funkcji ortogonalnych Sampling; współczynniki szeregu Fouriera są równe wartościom próbek sygnału.

26 Władymyr A. KOTELNIKOW ( Teoria sygnałów Zdzisław Papir Prof. Vladimir A. Kotelnikov has been making fundamental contributions to his field for over 70 years, despite working for many years in relative isolation from the global engineering community. V. Kotelnikov led the formulation and proof of the sampling theorem, spearheaded the development of the theory of optimum noise immunity, and then applied his findings to both radar and communi- cations. As a leader of several institutions, including the Moscow Power Engineering Institute, the Research Institute of the Ministry of Communications, and the Institute of Radioengineering and Electronics of the Russian Academy of Sciences, he created innovative communications equipment, jet technology, and devices for the control of rocket trajectories. He also improved radiotelegraphic lines, perfected code systems, and played a leading role in radar astronomy, designing planet radar equipment that led to close observations of planets.

27 Claude E. SHANNON ( ) Teoria sygnałów Zdzisław Papir Claude Elwood Shannon, prof. at the MIT, has, in a long and celebrated career, developed the mathematical theories and techniques that make possible the analysis of switching circuits, computers and communications. His most significant piece of work is "A Mathematical Theory of Communication," published in two parts in With this paper, Shannon laid down the theoretical foundation for communications engineering opening a new mathematical field for engineering applications. Shannon's work compares only to that of Norbert Wiener in the theory of time series and to that of Von Neumann and Morgenstern in the theory of games.

28 Szereg sygnałów, stosowanych w praktyce laboratoryjnej, nie posiada transformat Fouriera (nie spełniają warunku Dirichleta). Konstrukcja transformat Fouriera dla tej klasy sygnałów korzysta z definicji delty Diraca (dystrybucji Diraca). Delta Diraca przyporządkowuje sygnałowi – w zapisie całkowym – wartość jego próbki. Funkcja grzebieniowa Diraca – ciąg okresowo powtarzanych impulsów Diraca – umożliwia zapis operacji próbkowania sygnałów oraz wyznaczenie transformaty Fouriera sygnału spróbkowanego. Częstotliwość Nyquista jest równa podwojonej częstotliwości granicznej sygnału; w celu uniknięcia efektu aliasingu sygnał powinien być próbkowany z częstotliwością przewyższającą częstotliwość Nyquista. Podsumowanie Teoria sygnałów Zdzisław Papir

29 Próbkowanie sygnału dolnopasmowego z częstotliwością Nyquista nie powoduje utraty informacji o międzypróbkowych wartościach sygnału; w celu ich odtworzenia należy zastosować filtrację dolnopasmową. Sygnał ciągły powstający z filtracji dolnopasmowej swoich próbek może być zapisany w postaci szeregu Fouriera (względem ortogonalnego układu funkcji sampling); wartości próbek są współczynnikami tego szeregu Fouriera. Podsumowanie Teoria sygnałów Zdzisław Papir


Pobierz ppt "Dystrybucje (delta Diraca) Teoria sygnałów Zdzisław Papir Sygnały niespełniające warunku Dirichleta Dystrybucja Delta (impuls) Diraca Właściwość próbkująca."

Podobne prezentacje


Reklamy Google