Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Zbiory Co to jest zbiór? Nie martw się, jeśli nie potrafisz odpowiedzieć. Nie ma odpowiedzi na to pytanie.

Podobne prezentacje


Prezentacja na temat: "Zbiory Co to jest zbiór? Nie martw się, jeśli nie potrafisz odpowiedzieć. Nie ma odpowiedzi na to pytanie."— Zapis prezentacji:

1 Zbiory Co to jest zbiór? Nie martw się, jeśli nie potrafisz odpowiedzieć. Nie ma odpowiedzi na to pytanie.

2 Słowo zbiór określa zazwyczaj grupę pewnych obiektów. Interesować nas będzie które elementy tworzą dany zbiór. W matematyce będziemy najczęściej mówić o zbiorach liczb, punktów czy figur.

3 Czy potrafisz podać przykład jakiegoś zbioru? Ja potrafię - zbiór dużych chłopców. Potocznie, duszku, mógłbyś tak sformułować pytanie, jednak w matematyce określenie to jest bardzo nieprecyzyjne. Niech będzie więc zbiór chłopców.

4 W życiu codziennym mamy do czynienia zazwyczaj ze zbiorami skończonymi, np. takimi jak: zbiór eksponatów w muzeum czy samochodów na drodze. Czym charakteryzuje się zbiór skończony? Szczególnym przypadkiem zbioru skończonego jest zbiór pusty. Nie zawiera on żadnego elementu. Podaj kilka przykładów zbiorów skończonych.

5 Podaj teraz parę przykładów zbiorów nieskończonych. Oczywiście, nie udałoby się w skończonym czasie wymienić wszystkich elementów takiego zbioru. Podajemy więc własność (zbiór liczb naturalnych) lub wypisujemy część elementów, pozostałe zastępując trzema kropkami. np.: {2, 3, 5, 7, 11, 13, 17, 19,...} Łatwo domyślić się, że jest to zbiór liczb pierwszych.

6 Zbiory oznaczamy zazwyczaj dużymi literami, a ich elementy małymi. Przykłady zbiorów: 1. A = {2, 4, 6} - zbiór liczb parzystych, mniejszych od B = {1, 2, 3, 4, 5,...} - zbiór liczb naturalnych. 3. C = {10,11,12,...,98, 99} - zbiór liczb naturalnych, dwucyfrowych. 4. Ludzie = {kobiety, mężczyźni}. 5. D = Ø - zbiór pusty. Przeczytaj zapis: 4  A 4 należy do zbioru A. b  D b nie należy do zbioru D.

7 Które z podanych zdań są prawdziwe? 1. Każdy kwadrat jest czworokątem. 2. Każda liczba całkowita jest liczbą naturalną. 3. Każdy trójkąt równoboczny jest równoramienny. 4. Każdy ptak umie latać. 5. Każda liczba parzysta jest liczbą całkowitą. Jeżeli każdy element zbioru A jest elementem zbioru B, powiemy, że A jest podzbiorem zbioru B lub, że A jest zawarty w zbiorze B. A  B Taką sytuację oznaczamy symbolem:

8 A czy może się zdarzyć, że jednocześnie A  B i B  A? Wtedy obydwa zbiory są równe (mają te same elementy), dlatego oznaczamy je następująco A = B. Do jakiego zbioru należy zbiór pusty? Zbiór pusty jest podzbiorem każdego zbioru.

9 TRAPEZY RÓWNOLEGŁOBOKI PROSTOKĄTY ROMBY Rysunek poniżej pokazuje zależności występujące pomiędzy pewnymi figurami. Co możesz z niego odczytać? Podzbiory występują w zagadnieniach związanych z klasyfikacją.

10 Postaraj się teraz samodzielnie rozwiązać zadania, które otrzymałeś od nauczyciela. Powodzenia!!!


Pobierz ppt "Zbiory Co to jest zbiór? Nie martw się, jeśli nie potrafisz odpowiedzieć. Nie ma odpowiedzi na to pytanie."

Podobne prezentacje


Reklamy Google