Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Równanie Schrödingera gdzie danymi są h stała uniwersalna Plancka m masa cząstki V(r) jej energia potencjalna i wynikiem obliczeń jest {α, ω(α), ψ α (r)},

Podobne prezentacje


Prezentacja na temat: "Równanie Schrödingera gdzie danymi są h stała uniwersalna Plancka m masa cząstki V(r) jej energia potencjalna i wynikiem obliczeń jest {α, ω(α), ψ α (r)},"— Zapis prezentacji:

1 Równanie Schrödingera gdzie danymi są h stała uniwersalna Plancka m masa cząstki V(r) jej energia potencjalna i wynikiem obliczeń jest {α, ω(α), ψ α (r)}, zbiór rozwiązań indeksowanych przez α (tzw. liczba kwantowa wskazująca stan α) dla energii ω i funkcji falowej ψ.

2 Równanie Schrödingera jest podstawowym narzędziem mechaniki kwantowej. Komplet to równanie Schrödingera na szukane: energię ω i funkcję falową ψ(r), oraz 5 warunków (stanowiących integralną część metody) które musi spełnia funkcja falowa ψ: (1)ψ ma być funkcją ciągłą, (2)o ciągłych pochodnych, (3)jednoznaczna, (4)ograniczona i (5)unormowana Natomiast informacją wejściową dla RS (które jest równaniem ruchu jak II zasada dynamiki Newtona) jest energia potencjalna V(r) (lub siła F jak dla F=ma)

3 Od 1 atomu (gaz) do wielu atomów (ciecz, ciało stałe) gaz V(atom)=V(gaz) ciecz, c. stałe V(c.stałe)=inne

4 Pasma energii: Δω << T << W 1 atom gaz=N atomów kryształ=N atomów ω(α)=energia to samo ω(α) pasmo: 0<ω0 Ciało stałe tworzą atomy ułożone ciasno, stąd inne V(r) niż w atomie. Wynik to: 1)rozszczepienie=rozrzut poziomów ω, W=1eV=10 4 K, stąd Δω=W/N= K, energia NIEMAL ciągła 2)większa szerokość W dla pasm o wyższych energiach 3)ciecz Fermiego=widmo niemal ciągłe + zakaz Pauliego 4)energia Fermiego, zamrożenie czy ruchliwość elektronów 5)przewodniki i izolatory, zachodzenie pasm

5 ZAKAZ Pauliego: fermiony i bozony stan układu:α=(n,l,m,s) energia: ω(n,l) Uwaga: np. dla α=(2,1,-1,1/2), β=(2,1,+1,-1/2), pomimo że α i β są różne, to ω(α)= ω(β) i dlatego zakaz Pauliego brzmi poprawnie n(α)=0,1 (błędnie ω(α)=0,1). Gdy zakaz Pauliego: nie obowiązuje, n(α)=0,1,2,3,...obowiązuje, n(α)=0,1 to bozony fermiony np. fotony np. elektrony

6 Od 1 atomu (gaz) do wielu atomów (ciecz, ciało stałe)...na przykładzie rozkładu n=5 cząstek FERMIONY ω x energia Fermiego x stan wzbudzonyx x BOZONY...x x x stan wzbudzonyx x x 0stan podstawowyx xxxxxx x xx temperatura T0 T>0 0 T>0 zakaz Pauliego tak nie

7 Zachodzenie pasm - czyli dlaczego magnez jest metalem 1s 2 2s 2 p 6 3s 1 1s 2 2s 2 p 6 3s 2 11Na=1s 2 2s 2 p 6 3s 1 (f=1/2=50%) ==> spodziewany metal tak 12Mg=1s 2 2s 2 p 6 3s 2 (f=2/2=100%) ==> izolator, ??? pasmo 3p pasmo 3s pasmo 3s pasmo 3s 11Na 12Mg 12Mg 3s 1 3s 2 3s 1,4 p 0,6 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

8 Zachodzenie pasm Przykład: (atom) magnez 1s 2 2s 2 p 6 3s 2 Przykład: (atom) magnez 12Mg=1s 2 2s 2 p 6 3s 2 (f=2/2) atomy (gaz)c. stałe (kryształ) atomy (gaz)c. stałe (kryształ)3p3s3p 3s 3s 11Na=3s 1 3s 1 12Mg=3s 2 3s 1,6 p 0,4 NaMg

9 Metale, izolatory i półprzewodniki Mechanizm przewodnictwa σ(T), izolator to σ=0 metal metal półprzewodnik 0 ==== 0 - ===> +T=0 T>0 T> ====> + x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 0 x x x x 0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

10 Model silnego wiązania, pasma Model silnego wiązania (TBM=Tight Binding Model) to b. dobry przykład dla wyjaśnienia koncepcji pasm. TBM to przybliżone, analityczne rozwiązanie dla potencjału V(r) w krysztale, który jest stosunkowo bliski potencjałowi atomowemu. Atom (pasmo=poziom, W=0) TBM(pasmo, W>0) model elektronów swobodnych(pasmo W nieskończoność). Idea: periodyczny potencjał V(r) w krysztale zawsze daje energię ω electronu postaci ω(k x,k y,k z ), gdzie k x,k y,k z to tzw. wektor falowy o dyskretnych wartościach, co czyni energię ω również dyskretną. Np. dla 26Fe=3d 7.2 4s 0.8, możemy stosować TBM dla elektronów 3d. Dla elektronów walencyjnych 4s, alternatywny model elektronów swobodnych, V(r)=const, jest bardziej właściwy.

11 Model silnego wiązania, pasma...jest obliczoną dla tetragonalnej struktury krystalograficznej energią TBM dla parametrów (t x,t y,t z ) bezpośrednio związanych z odległościami (a x,a y,a z ) między najbliższymi sąsiadami wzdłuż osi krystalograficznych (x,y,z), t ~ a –5. (Wykładnik 5 dla np. stanów 3d.) Z powyższego wzoru wynika szerokość pasma W=4(t x +t y +t z ). Oczywiście t 0 jest limitem atomowym dla którego otrzymujemy poziom energii ω=ω 0, W=0, zamiast pasma. Najczęściej dobieramy parametr ω 0 tak, aby dno pasma k=0 opowiadało energii ω=0. Wówczas ω 0 =2(t x +t y +t z ).

12 Model silnego wiązania, pasma Często występuje przypadek małej liczby N elektronów (np. półprzewodniki) które zatem zajmują niskie poziomy energii w pobliżu dna pasma k=0. Dla ilustracji rozpatrzmy np. t x =t y =t z. Stosując przybliżenie mamy a stąd Kwadratowa zależność ω(k) jest charakterystyczna dla modelu elektronów swobodnych, Zatem dla modelu TBM możemy zidentyfikować tzw. masę efektywną m *, zamiast parametru t. Np. dla Si: m e =0,31m, m h =0,38m. Pamiętamy a=F/m.


Pobierz ppt "Równanie Schrödingera gdzie danymi są h stała uniwersalna Plancka m masa cząstki V(r) jej energia potencjalna i wynikiem obliczeń jest {α, ω(α), ψ α (r)},"

Podobne prezentacje


Reklamy Google