Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Matematyczne techniki zarządzania - 31 ZMIENNE LOSOWE CIĄGŁE Są to zmienne, które mogą przyjmować wartości z nieprzeliczalnego zbioru wartości (przy założeniu,

Podobne prezentacje


Prezentacja na temat: "Matematyczne techniki zarządzania - 31 ZMIENNE LOSOWE CIĄGŁE Są to zmienne, które mogą przyjmować wartości z nieprzeliczalnego zbioru wartości (przy założeniu,"— Zapis prezentacji:

1

2 Matematyczne techniki zarządzania - 31 ZMIENNE LOSOWE CIĄGŁE Są to zmienne, które mogą przyjmować wartości z nieprzeliczalnego zbioru wartości (przy założeniu, że będą mierzone z wystarczającą dokładnością). dystrybuantafunkcja gęstości Zmienna ciągła jest opisywana dwoma funkcjami: funkcją gęstości f(X) dystrybuantą F(X) a f(a) P(X=a) = O

3 Matematyczne techniki zarządzania - 32 dystrybuantafunkcja gęstości a f(a) Interpretacja wykresu całe pole pod funkcją gęstości ma powierzchnię równą 1 wartość funkcji dystrybuanty zmienia się wraz z wartością x w sposób pokazany strzałką (prawa granica pola przesuwa się) znajomość funkcji dystrybuanty jest potrzebna do rozwiązywania wszelkich zadań: P(X a), P(7

4 Matematyczne techniki zarządzania - 33 Rozkład prostokątny Nosi on też nazwę rozkładu równomiernego lub jednostajnego (amodalnego). Jego funkcja gęstości ma stałą wartość w przedziale (a, b), natomiast dla pozostałych wartości X jest równa 0. a=0 b=8 Przykład 11. Autobus linii 144 jeździ regularnie co 8 minut. Czas oczekiwania na autobus (zmienna X) ma więc rozkład prostokątny (rysunek). Oblicz: 1. średni czas oczekiwania 2. jego odchylenie standardowe 3. szansę czekania dokładnie 3 min 4. szansę czekania około 3 min 5. szansę czekania mniej niż 3 min 6. szansę czekania więcej niż 3 min 7. prawdopodobieństwo, że czas czekania będzie w granicach od trzech do siedmiu minut

5 Matematyczne techniki zarządzania średni czas oczekiwania E(X) = 4 min 3. P(X=3)=? 4. P(X3)=? 2. wariancja V(X) =5,33 min 2 ; odchylenie standardowe s = 2,31 min 5. prawdopodobieństwo, że X<3 min odpowiada polu powierzchnia tego pola wynosi 3h, gdzie h = 1/(ab) =1/8 =0,125 P(X<3) =(3)(0,125) = 0,375; stąd F(X=3) = 0, prawdopodobieństwo, że X>3 min odpowiada polu powierzchnia tego pola wynosi 5h, czyli (5)(0,125) = 0,625 inaczej: P(X>3) = 1 F(X=3) = 1 0,375 = 0, P(3

6 Matematyczne techniki zarządzania - 35 Rozkład trójkątny Rozkład ten jest dany trzema wartościami zmiennej: f(X) X funkcja gęstości abc a najmniejsza przewidywana b najbardziej prawdopodobna c największa przewidywana xixi dystrybuanta Zalety rozkładu łatwy do matematycznego przetwarzania nadaje się do modelowania wszystkich rozkładów jednomodalnych stanowi narzędzie porozumienia z osobami nie znającymi statystyki wykorzystywany do symulacji komputerowej Rozkład normalny Zwany również rozkładem Gaussa lub krzywą dzwonową. Normalny bo najczęściej spotykany (ludzie, przyroda, technika). Jest to rozkład jednomodalny dany równaniem

7 Matematyczne techniki zarządzania - 36 Rozkład normalny jest dany dwoma parametrami: wartością średnią m odchyleniem standardowym WARTOŚĆ ŚREDNIA DECYDUJE O PRZESUNIĘCIU WYKRESU W LEWO LUB PRAWO ODCHYLENIE STANDARDOWE DECYDUJE O SMUKŁOŚCI WYKRESU m punkt przegięcia Interpretacja rozkładu na przykładzie wzrostu mężczyzn m=175 cm = 5 cm bardzo niscy (mało) średni (dużo) bardzo wysocy (mało) TWIERDZENIE CENTRALNE Które zmienne zachowuję się według rozkładu normalnego? Te, które kształtują się pod wpływem wielu czynników, z których żaden nie ma charakteru dominującego. m+ m

8 Matematyczne techniki zarządzania - 37 Istota twierdzenia centralnego (niezależne regulatory) Aby rozwiązywać zadania z rozkładu normalnego, musimy korzystać z tablicy dystrybuanty. Tablica została przygotowana dla rozkładu znormalizowanego zmiennej standaryzowanej Z. 34,13% 13,59% 2,15% 0,13% POWIERZCHNIA CAŁEGO POLA POD FUNKCJĄ GĘSTOŚCI RÓWNA SIĘ 1 X 1 = 160Z 1 = -3 X 2 = 165Z 2 = X 7 = 190Z 7 = +3 W przypadku wzrostu czynniki to: dziedziczność z różnych pokoleń, odżywianie, środowisko, choroby, warunki rodzinne itd.

9 Matematyczne techniki zarządzania - 38 Prawo trzech sigm: w przedziale od (m3) do (m+3)(oś X) od 3 do +3(oś Z) mieszczą się praktycznie wszystkie (99,74%) wartości zmiennej losowej o rozkładzie normalnym. Tablice rozkładu normalnego tablica funkcji gęstości tablice dystrybuanty SKRYPT s.156 (tab. II) tablica kwantyli (wartości krytycznych) SKRYPT s.156 (tab. IIa) Tablica funkcji gęstości służy do budowy wykresu funkcji gęstości (krzywej Gaussa) do odczytu P(X a) lub P(Z a) Proszę nie mylić tej tablicy z tablicami dystrybuanty; łatwo ją rozpoznać po wartości 0,3989! f(Z)

10 Matematyczne techniki zarządzania - 39 Tablice dystrybuanty (trzy rodzaje): w przedziale z od 3 do +3: F(z) od 0 do 1 (cała funkcja) w przedziale z od 0 do +3: F(z) od 0,5 do 1 (połowa funkcji) s.156 w przedziale z od 0 do +3: F * (z) od 0 do 0,5 (F(z)0,5) najbardziej przydatna, bo pola są symetryczne po obu stronach 0 to samo pole Przy rozwiązywaniu zadań przechodzi się ze zmiennej X na zmienną Z, a następnie z powrotem na zmienną X: F * (Z)

11 Matematyczne techniki zarządzania - 40 Przykład 12. Agnieszka, wysoka studentka z WZ, jest na dyskotece wśród studentów N(175; 5). Odpowiedz, jakie jest prawdopodobieństwo, że napotka ona studenta o wzroście: a. około 180 cm b. niższym niż 180 cm c. wyższym niż 180 cm d. w granicach pomiędzy 172,5 i 182,5 cm e. w granicach pomiędzy 180 i 182,5 cm TO JEST MODEL! Z (a) x 1 =180 cm standaryzacja: z 1 =(180175)/5=1 odczyt z tablicy f. gęstości: f(1)=0,2420 P(X 180)=24,2% m=175 cm =5 cm (a) (b) odczyt z tablicy dystrybuanty dla z 1 =1: F * (1)=0,3413 P(z<1)=0,5+0,3413=0,8413 P(X<180)=84,13% STOSUJEMY TO SAMO ROZUMOWANIE, KTÓRE WYKORZYSTYWALIŚMY PRZY ZADANIACH Z ROZKŁADU PROSTOKĄTNEGO

12 Matematyczne techniki zarządzania - 41 F * (1) (b) (c) P(Z>1)=0,5F * (1)=0,5 0,3413=0,1587 P(X>180)=15,87% (c) (d) x 1 =182,5 cm, x 2 =172,5 cm z 1 =(182,5175)/5=1,5 z 2 =(172,5175)/5= 0,5 F*(1,5)=0,4332 F*(0,5)=F*(+0,5)=0,1915 P(0,5

13 Matematyczne techniki zarządzania - 42 Inne zadania tego typu w Skrypcie (s. 54, 72-74), rozkład normalny mają zmienne: błąd pomiaru, wskaźnik inteligencji, zysk z akcji, zużycie energii, trwałość urządzenia, czas wykonywania pracy, wielkość kredytu bankowego, wynagrodzenie pracowników. Przedział ufności, poziom ufności, poziom istotności Uliczka w Neapolu * Rozpatrujemy prawdopodobieństwo przykrycia węzła przez prześcieradło: przedział ufności (dggg) = szerokość prześcieradła poziom ufności (1) = szansa przykrycia węzła poziom istotności() = szansa nieprzykrycia węzła Przedział ufności jest to przedział, w którym z prawdopodobieństwem 1 znajduje się nieznana wartość zmiennej losowej. Poziom ufności (1) jest to prawdopodo- bieństwo, że nieznana wartość zmiennej losowej znajduje się w przedziale ufności. Poziom istotności () jest to prawdopodo- bieństwo, że nieznana wartość zmiennej losowej nie znajduje się wewnątrz przedziału ufności. ustala statystyk kluczowe w statystyce matematycznej inne nazwy: margines błędu, poziom krytyczny

14 Matematyczne techniki zarządzania - 43 Przedział ufności dla rozkładu normalnego Przykład 12 cd. Agnieszka postanowiła odrzucić 10% krańcowo niskich i wysokich studentów jako nienadających się do tańca. Określ jaki przedział wzrostu miała ona na myśli. Przedział ufności może być: dwustronny lewostronny prawostronny Przedział dwustronny Odrzucamy 5% najniższych studentów i 5% najwyższych. /2=5% Przyjęliśmy =0,10, czyli /2=0,05, a tym samym (1)=0,90. Należy znaleźć wartości zmiennej X tworzące stosowny przedział ufności (dg, gg). dg gg 1=90% Potrzebne do tego obliczenia są odwrotnością obliczeń wykonywanych poprzednio: przedtem: znaliśmy z i, a szukaliśmy pola teraz: znamy pole (1)/2, a szukamy z i z i = gg=dg

15 Matematyczne techniki zarządzania - 44 Szukanie wartości z i można wykonywać przy użyciu: dowolnej tablicy dystrybuanty rozkładu normalnego tablicy kwantyli (1) SKRYPT s. 156 (tabl. IIa) Mając (1)/2 = 0,45, traktujemy tę wartość jako F*(z i ) i odczytujemy z tablicy z i = 1,64. Następnie przechodzimy na zmienną X: studenci odrzuceni Przedział lewostronny Odrzucamy 10% najwyższych studen- tów. Odczytujemy dla F*(z i )=0,40 wartość z i = 1,28, co daje:

16 Matematyczne techniki zarządzania - 45 Przedział prawostronny Odrzucamy 10% najniższych studentów. Odczytujemy dla F*(z i )=0,40 wartość z i =1,28, co daje: Trzy ważne wartości z i : 1,28; 1,64; 1,96 Rozkład logarytmiczno-normalny Jest to rozkład, który po zlogarytmowaniu zmiennej X staje się rozkładem normalnym. Służy do opisywania tych zjawisk, które oprócz wielu wartości małych i średnich mają również wartości bardzo duże (zanieczyszczenie środowiska, wydajność produkcji, wielkość złóż kopalin użytecznych itd.). f(X) małe średnieduże bardzo duże X Jednostki-giganty, które zglobalizo- wały gospodarkę światową: duże złoża węgla, ropy i gazu, wielkie zakłady produkcyjne itp.

17 Matematyczne techniki zarządzania - 46 Rozkład wykładniczy f(X) X Cechy rozkładu: dużo wartości małych mało wartości dużych opisuje czas życia elementów nagle psujących się brak pamięci Przykład 13. Prowadząc studia literaturowe nad rozkładem wielkości złóż węglowodorów napotkałem na dziwny przypadek: źródła amerykańskie podawały, że jest to rozkład log-norm, a źródła rosyjskie że rozkład wykładniczy. f(X) małe średnieduże bardzo duże X ZSRR USA USA po kryzysie złoża nie- opłacalne I II III IV Wnioski chodzi o inne zbiory złóż zbiór złóż handlowych poszukiwania to gra w okręty (fazy I, II, III i IV) zbiór złóż odkrytych jest próbką niereprezentacyjną

18 Matematyczne techniki zarządzania - 47 Inne pojęcia związane ze zmienną ciągłą Asymetria f(X) X X dodatnia ujemna m>Me m

19 Matematyczne techniki zarządzania - 48 Wykres liściowy Angielskie stem-and-leaf plots Umożliwia szybkie analizowanie zjawisk Przykład z oszustwem kasjerek Wykres skrzynkowy Angielskie box-and-whisker diagram (box plot) Często stosowany do prezentacji danych (płotki w odległości 1,5 różnicy pomiędzy kwartylami) Me X Przetwarzanie danych empirycznych w rozkład normalny 1. Podzielenie danych x i na przedziały (liczebność 8-12, szerokość według nominałów monet i banknotów) 2. Ustalenie liczebności empirycznych n ie 3. Przeliczenie liczebności na prawdopodobieństwa empiryczne p ie 4. Obliczenie parametrów m oraz s 5. Standaryzacja środków przedziałów X Pł.1 Q1 Q3 Pł.2 Wyrz

20 Matematyczne techniki zarządzania Wyznaczenie prawdopodobieństw teoretycznych p io 7. Wyliczenie liczebności teoretycznych n io 8. Ustalenie czy dwa rozkłady różnią się od siebie istotnie PRAWO WIELKICH LICZB Przykład 14. Rzucamy wielokrotnie dwoma monetami i rejestrujemy zmia- nę średniej liczby orłów na jeden rzut w miarę wzrostu liczby doświad- czeń. Wiemy, że wartość oczekiwana liczby orłów E(X) = 1. W miarę zwiększania liczby doświadczeń uzyskany wynik zbliża się coraz bardziej do prawdziwej wartości dla całej populacji

21 Matematyczne techniki zarządzania - 50 Wnioski każde takie badanie jest niepowtarzalne badając próbkę można uzyskać przybli- żoną informację o całej populacji zwiększanie ilości doświadczeń ponad pewną liczbę jest nieopłacalne, gdyż jest kosztowne a nie zwiększa wyraźnie stopnia poznania rzeczywistości minimalna wielkość (liczebność) próbki wynosi 30 obserwacji właściwą wielkość próbki dobiera się w zależności od błędu (SKRYPT s. 85) nie można jednak zagwarantować na 100%, że badanie próbki da wynik zgodny z rzeczywistością posługiwanie się próbką daje jednak cał- kiem inny pogląd na rzeczywistość niż po- jedyncze obserwacje inaczej nasze pojedyncze obserwacje, a inaczej wielkie liczby (sąsiadka, bohaterka powieści Homo Faber M. Frischa) na prawo wielkich liczb składa się szereg twierdzeń, m.in. nierówność Czebyszewa populacja próbka

22 Matematyczne techniki zarządzania - 51 Sposoby pobierania próbek statystycznych Próbka musi być pobrana w sposób losowy, tzn. każdy element populacji musi mieć jednakową szansę trafienia do próbki. próbka reprezentatywna próbka tendencyjna losowanie systematyczne losowanie warstwowe losowanie proporcjonalne Przedmiotem tego działu jest wyciąganie wniosków o rozkładzie i parame- trach populacji generalnej na podstawie badania próbki. Teoria estymacji zajmuje się szacowaniem parametrów populacji general- nej na podstawie próbki statystycznej. Rodzaje estymacji punktowa przedziałowa Pojęcia z teorii estymacji estymacja estymator (estimator) wartość oszacowana (estimate) WNIOSKOWANIE STATYSTYCZNE

23 Matematyczne techniki zarządzania - 52 Estymator jest to zmienna losowa, której realizacjami są wartości rozwa- żanego parametru powstałe przez pobranie z populacji bardzo wielu próbek. Wartość oszacowana jest to wartość danego parametru wyznaczona na pod- stawie jednej, rzeczywiście pobranej próbki. Estymator jak każda zmienna ma swoją wartość oczekiwaną i odchyle- nie standardowe. Cechy dobrego estymatora nieobciążony zgodny (PWL) najefektywniejszy (V min ) CO MOŻE BYĆ PARAMETREM POPULACJI? Różne parametry niektóre z nich już znamy (wartość średnia, odchylenie standardowe), inne poznamy później.

24 Matematyczne techniki zarządzania - 53 ESTYMACJA WARTOŚCI ŚREDNIEJ POPULACJI Celem jest ustalenie ile wynosi nieznana wartość : estymacja punktowa: = x estymacja przedziałowa: budowa wokół wartościx przedziału ufności, w którym z prawdopodobieństwem 1 znajdzie się nieznane Przykład 15. Zakładamy, że populacja generalna jest bardzo mała i składa się tylko z sześciu liczb: 2, 3, 4, 5, 6, 7 Parametry tej populacji: = 4,5 2 = 2,9167

25 Matematyczne techniki zarządzania - 54 Przyjmujemy liczebność próbki n=2 i przystępujemy do rozważania ile i jakich dwuelementowych próbek można pobrać ze zwracaniem z tej populacji. Próbek tych jest 36, tworzą one rozkład estymatora o następujących parametrach Powtarzając to samo dla n=3 i n=4, otrzymamy Mamy więc zależności 2 = 2,9167

26 Matematyczne techniki zarządzania - 55 oraz wnioski średnia estymatora równa się średniej populacji znamy wzór na błąd oszacowania średniej gdy Możemy teraz zbudować przedział ufności dla nieznanej średniej dla populacji przy dużej próbce: jeśli znamy odchylenie standardowe populacji jeśli nie znamy odchylenia standardowego populacji Jak to wykorzystać w praktyce? pobieramy próbkę, liczymy dla niej x oraz s budujemy przedział ufności (dg, gg), w którym z prawdopodobieństwem 1 znajduje się nieznana wartość średniej dla populacji o ile loso- wanie próbki nie było pechowe (np. 2, 2 lub 7, 7 w przykładzie 15)

27 Matematyczne techniki zarządzania - 56 jeśli losowanie było pechowe, to nie- znane leży z szansą /2: 1. albo poniżej dg 2. albo powyżej gg WIĘCEJ O NIEZNANEJ ŚREDNIEJ POPU- LACJI NIE POTRAFIMY POWIEDZIEĆ! dg x gg Szerokość przedziału ufności dla zależy od: przyjętego poziomu istotności wielkości próbki n jej odchylenia standardowego s ESTYMACJA PROPORCJI DLA POPULACJI Celem jest ustalenie na podstawie badania próbki jaka część populacji ma określoną cechę jakościową (niemierzalną), na przykład jaki ułamek (frakcja) wszystkich robotników przeszła szkolenie, jaka część studentów pracuje zawodowo itd. Ustala się proporcję p dla próbki i po przyjęciu określonego poziomu istot- nosci buduje się przedział ufności dla nieznanej proporcji dla populacji:

28 Matematyczne techniki zarządzania - 57 I tym razem szerokość przedziału jest zależna od przyjętego poziomu istot- ności oraz od błędu oszacowania proporcji s p, który z kolei jest funkcją wielkości próbki i jej proporcji. PRZEDZIAŁ UFNOŚCI DLA ŚREDNIEJ POPULACJI PRZY MAŁEJ PRÓBCE Stwierdzono, że w przypadku małej próbki estymator x zachowuje się we- dług rozkładu nieco odmiennego od rozkładu normalnego. Rozkład ten zos- tał utworzony przez Gosseta, który opublikował go pod pseudonimem Student. Stąd mamy rozkład Studenta Funkcja gęstości rozkładu t jest funkcją liczby stopni swobody Gdy dąży do, rozkład t dąży do rozkładu normalnego

29 Matematyczne techniki zarządzania - 58 Różnica pomiędzy rozkładem Studenta i rozkładem normalnym rozkład Studenta jest bardziej płaski, ma dłuższe ogony rozkład Studenta jest określony tylko jednym parametrem 0 rozkład normalny z rozkład Studenta t =8 z/2 t/2 () obok przedział dwustronny może też być jednostronny tablica rozkładu Studenta (SKRYPT s.157, tabl.III) nie poka- zuje ani funkcji gęstości, ani funk- cji dystrybuanty pokazuje wartości t odpowiada- jące założonemu poziomowi istot- ności dla danych stopni swobody

30 Matematyczne techniki zarządzania - 59 Fragment tablicy rozkładu Studenta Przedział ufności dla średniej dla populacji przy małej próbce wszystkie obliczenia przedziału ufności przeprowadza się tak jak w przykładzie 12 z Agnieszką rozkład Studenta daje szersze przedziały ufności niż rozkład normalny, gdyż zabezpiecza nas przed skutkami pobrania mniejszej próbki pobieżne obliczenia można zrobić biorąc dwa błędy oszacowania średniej (odpowiada to mniej więcej poziomowi istotności 5%)

31 Matematyczne techniki zarządzania - 60 Podsumowanie estymacji wartości średniej dla populacji


Pobierz ppt "Matematyczne techniki zarządzania - 31 ZMIENNE LOSOWE CIĄGŁE Są to zmienne, które mogą przyjmować wartości z nieprzeliczalnego zbioru wartości (przy założeniu,"

Podobne prezentacje


Reklamy Google