Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Rachunek prawdopodobieństwa 1 uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 2 wykładowca: dr Magdalena Kacprzak data: grudzień 2009 Materiały pomocnicze.

Podobne prezentacje


Prezentacja na temat: "Rachunek prawdopodobieństwa 1 uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 2 wykładowca: dr Magdalena Kacprzak data: grudzień 2009 Materiały pomocnicze."— Zapis prezentacji:

1 Rachunek prawdopodobieństwa 1 uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 2 wykładowca: dr Magdalena Kacprzak data: grudzień 2009 Materiały pomocnicze do wykładu

2 Przestrzeń zdarzeń elementarnych

3 Definicje Pojedyncze wyniki doświadczenia losowego nazywamy zdarzeniami elementarnymi. Zbiór wszystkich zdarzeń elementarnych odpowiadających pewnemu doświadczeniu tworzy przestrzeń zdarzeń elementarnych, którą oznaczamy symbolem

4 Przykład Ustal przestrzeń zdarzeń elementarnych i jej moc 1) Zdarzenie polega na rzucie dwiema kostkami do gry 2) Zdarzenie polega na rzucie trzema monetami = {(o,o,o), (o,o,r), (o,r,o),...,(r,r,r) } | | = 6 6=36

5 Przykład c.d. Ocena końcowa pewnego przedmiotu zależy od liczby punktów uzyskanych na dwóch sprawdzianach i na egzaminie. Na każdym sprawdzianie można uzyskać co najwyżej 20 punktów, a na egzaminie co najwyżej 60. ={(x,y,z) N 3 : x 20, y 20, z 60}. | =

6 Zdarzenia

7 Definicja Niech będzie przestrzenią zdarzeń elementarnych. Dowolny podzbiór A przestrzeni zdarzeń elementarnych nazywamy zdarzeniem. Powiemy, że zaszło zdarzenie A, jeśli wynikiem doświadczenia jest zdarzenie elementarne należące do A.

8 Przykład 1 Doświadczenie polega na rzucie dwiema rozróżnialnymi kostkami sześciennymi do gry. Wówczas = {(i,j) : i, j = 1, 2,...6}. Wypisz wszystkie wyniki sprzyjające każdemu z poniższych zdarzeń (a) Zdarzenie A = "suma oczek na obu kostkach wynosi 7". A={(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} |A|=6

9 Przykład 1 (b) Zdarzenie B = "suma oczek na obu kostkach wynosi nie więcej niż 12". (c) Zdarzenie C = "suma oczek na obu kostkach wynosi 1". Jest to zdarzeniem pewnym, bo każde zdarzenie elementarne ma tę własność. Jest to zdarzeniem niemożliwe, bo na każdej kostce musimy wyrzucić co najmniej jedno oczko, co w sumie daje co najmniej dwa oczka.

10 Przykład 2 Rozważmy doświadczenie z przykładu 1. Ile zdarzeń elementarnych sprzyja zdarzeniu F-"liczba oczek na pierwszej kostce jest dzielnikiem liczby oczek na drugiej kostce"? F={(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (5,5), (6,6)} |F|=14

11 Operacje na zdarzeniach

12 Zdarzenia identyczne Na zdarzeniach wykonujemy takie same operacje jak na zbiorach. Powiemy, że dwa zdarzenia w pewnej przestrzeni zdarzeń elementarnych są identyczne, jeśli mają te same zbiory sprzyjających zdarzeń elementarnych.

13 Suma zdarzeń Sumą zdarzeń A i B nazywamy zdarzenie AB, któremu sprzyjają wszystkie zdarzenia elementarne sprzyjające zdarzeniu A lub zdarzeniu B.

14 Iloczyn zdarzeń Iloczynem zdarzeń A i B nazywamy zdarzenie A B, któremu sprzyjają zdarzenia elementarne sprzyjające zdarzeniu A i zdarzeniu B.

15 Zdarzenia przeciwne i wykluczające się Zdarzenie A'=\A nazywamy zdarzeniem przeciwnym do zdarzenia A. Zdarzeniu A' sprzyjają tylko te zdarzenia elementarne rozważanej przestrzeni, które nie należą do A. Powiemy, że dwa zdarzenia A i B wykluczają się (albo są rozłączne) wtedy i tylko wtedy, gdy A B =.

16 Przykład 1 Doświadczenie polega na rzucie dwiema rozróżnialnymi kostkami sześciennymi do gry. Zdarzenie A - "suma oczek na obu kostkach wynosi 7". Zdarzenie D –"co najmniej raz wyrzucono 5". Wyznacz Iloczyn zdarzeń A i D oraz zdarzenie przeciwne do zdarzenia D. A={(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}, D={(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (1,5), (2,5), (3,5), (4,5), (6,5)} A D={(2,5), (5,2)}, |A D|=2 D={(1,1), (1,2),...,(1,4), (1,6),...(6,6)}, |D|=25

17 Przykład 2 Niech będzie urna z 52 kartami. Rozważamy doświadczenie polegające na wylosowaniu kolejno 2 kart, z tym, że po wylosowaniu karty wkładamy ją znów do urny (losowanie ze zwracaniem). Zdarzenia A - "wylosowano za każdym razem asa" i B = "za drugim razem wylosowano dziesiątkę" są zdarzeniami wyłączającymi się. Nie ma takich zdarzeń elementarnych, które sprzyjają równocześnie obu zdarzeniom. Natomiast zdarzenie, które jest sumą zdarzeń A i B ma ????????? zdarzeń sprzyjających.

18 Przykład 2 Niech będzie urna z 52 kartami. Rozważamy doświadczenie polegające na wylosowaniu kolejno 2 kart, z tym, że po wylosowaniu karty wkładamy ją znów do urny (losowanie ze zwracaniem). Zdarzenia A - "wylosowano za każdym razem asa" i B = "za drugim razem wylosowano dziesiątkę" są zdarzeniami wyłączającymi się. Nie ma takich zdarzeń elementarnych, które sprzyjają równocześnie obu zdarzeniom. Natomiast zdarzenie, które jest sumą zdarzeń A i B ma zdarzeń sprzyjających.

19 Prawdopodobieństwo

20 Definicja (Kołmogorow 1933) Niech oznacza skończoną przestrzeń zdarzeń elementarnych. Prawdopodobieństwem nazywamy funkcję P określoną na zdarzeniach taką, że (1) P(A) 0 dla dowolnego zdarzenia A, (2) P(AB) = P(A) + P(B) dla dowolnych, wykluczających się zdarzeń A, B (3) P() = 1. Wniosek: 0P(A)1

21 Lemat Jeżeli zdarzenia A 1, A 2,..., A n, określone w pewnej przestrzeni zdarzeń elementarnych, wykluczają się parami, to P(A 1...A n )=P(A 1 )+P(A 2 )+...+P(A n ).

22 Twierdzenie Prawdopodobieństwo zdarzenia A jest ilorazem liczby zdarzeń elementarnych sprzyjających zdarzeniu A i liczby zdarzeń elementarnych rozważanej skończonej przestrzeni, o ile zdarzenia elementarne są tak samo prawdopodobne, tzn. Wzór zawarty w powyższym twierdzeniu nazywa się klasyczną definicją prawdopodobieństwa, a został on sformułowany przez Laplace'a.

23 Przykład 1 Rzucamy 10 razy monetą. Jakie jest prawdopodobieństwo, że w dziesięciu rzutach dokładnie 4 razy pojawi się orzeł?

24 Przykład 1 Rzucamy 10 razy monetą. Jakie jest prawdopodobieństwo, że w dziesięciu rzutach dokładnie 4 razy pojawi się orzeł? || = 2 10 =1024 |A| = = 210 P(A) = 210/1024

25 Własności prawdopodobieństwa Niech będzie przestrzenią zdarzeń elementarnych, a A i B dowolnymi zdarzeniami. Wtedy – P() = 0, – jeżeli A B, to P(A) P(B), – dla każdego A, P(A) 1, – P(A') =1 - P(A), – P(A B) = P(A) + P(B) - P(A B).

26 Dowód (a) Ponieważ prawdopodobieństwo zdarzenia pewnego wynosi 1, a zdarzenie puste wyklucza się ze zdarzeniem pewnym, zatem P() + P() = P( ) = P() = 1. Czyli musi być P() = 0. (b) Jeżeli A B, to B = (B\A) A oraz (B\A) A = W konsekwencji definicji prawdopodobieństwa mamy P(B) = P((B\A) A ) = P(B\A) + P(A). Ponieważ P(A) 0 i P(B\A) 0, zatem P(A) P(B). (c) Natychmiastowa konsekwencja punktu (b) i definicji prawdopodobieństwa.

27 Dowód c.d. (d) Ponieważ 1 = P() = P(A A') = P(A) + P(A'), więc P(A') =1 - P(A). (e) Z praw teorii mnogości, dla dowolnych zbiorów A i B mamy A B = A B\A = B\A A\B oraz A B\A =, B\A A\B =. Wynika stąd, na mocy definicji prawdopodobieństwa, że P(AB)=P(A)+P(B\A), P(B)=P(B\A)+P(AB). Stąd P(AB)=P(A)+P(B)- P(AB).

28 Przykład 1 Rozpatrzymy ilość (dm 3 ) wody jaką może mieć do przeprowadzenia w ciągu sekundy betonowy przepust. Dotychczasowe obserwacje pozwalają przyjąć, że (1) maksymalna możliwa ilośc wody wynosi 300 dm 3 /s. (2) P(A) – prawdopodobieństwo, że ilość wody (na sekundę) przyjmie wartość z przedziału (125,250] wynosi 0,6, (3) P(B) - prawdopodobieństwo, że ilość wody (na sekundę) przyjmie wartość z przedziału (200,300] wynosi 0,7 oraz (4) P(AB)=0,8. Obliczyć P(A), P(AB), P(AB), P(AB).

29 Przykład 1 (a) P(A)=1-0,6=0,4 (b) P(AB)=P(A)+P(B)-P(AB)=0,6+0,7-0,8=0,5 (c) P(AB)=P((AB))=1-P(AB)=1-0,8=0,2 (d) P(AB)=P(A\B)=P(A)-P(AB)=0,7-0,5=0,2

30 Przykład 2 Udowodnij, że P(A\B)P(A)-P(B). Dowód: Najpierw zauważmy, że ABB. Zatem P(AB)P(B). Stąd -P(AB) -P(B). Teraz mamy: P(A\B)=P(A-(AB))=P(A)-P(AB) P(A)-P(B).

31 Prawdopodobieństwo warunkowe

32 Definicja Prawdopodobieństwo zajścia zdarzenia A pod warunkiem, że zaszło zdarzenie B, oznaczane P(A|B), wyraża się wzorem: P(A|B) = P(AB)/P(B) o ile P(B)>0.

33 Przykład Z talii 52 kart losujemy 5 kart. Oblicz prawdopodobieństwo wylosowania 2 kierów, jeżeli wiadomo, że wśród wylosowanych kart nie ma kolorów pik i trefl. A - zdarzenie polegające na wylosowaniu 2 kierów, B - zdarzenie polegające na wylosowaniu kart wśród których nie ma kolorów pik i trefl

34 Przykład

35 Niezależność zdarzeń

36 Definicja Zdarzenia A i B nazywamy niezależnymi, jeśli prawdopodobieństwo iloczynu zdarzeń jest równe iloczynowi prawdopodobieństw tych zdarzeń P(AB) = P(A)P(B).

37 Definicja Niech będzie dany ciąg zdarzeń losowych A 1,...,A n w pewnej przestrzeni. Powiemy, że zdarzenia te są niezależne wtedy i tylko wtedy, gdy dla dowolnego podciągu i 1,..., i k ciągu 1,...,n, P(A i 1... A i k ) = P(A i 1 )... P(A i k ).

38 Lemat Jeżeli zdarzenia A i B są niezależne, to zdarzenia A i B' też są niezależne.

39 Przykład-zadanie Bernsteina 3 ściany czworościanu zostały pomalowane na biało, czerwono i zielono, zaś czwarta – w pasy biało-czerwono- zielone. Doświadczenie polega na rzucaniu czworościanu na płaszczyznę i obserwowaniu koloru ściany, na którą upadł czworościan. Zdarzenia B, C, Z określone są następująco: B – czworościan upadł na ścianę z kolorem białym, C – czworościan upadł na ścianę z kolorem czerwonym, Z – czworościan upadł na ścianę z kolorem zielonym. Zbadać, czy zdarzenia B, C, Z są (a) niezależne parami, (b) niezależne wzajemnie.

40 Przykład-zadanie Bernsteina P(B)=2/4, P(C)=2/4, P(Z)=2/4 P(B C)= P(B Z)=P(C Z)=1/4 (a) P(B C)=1/4, P(B) P(C) = 2/4 2/4 = 1/4, stąd P(B C) = P(B) P(C), czyli zdarzenia B i C są niezależne. Podobnie dla zdarzeń B i Z oraz C i Z. (b) P(B C Z) = 1/4, P(B) P(C) P(Z) =1/2 1/2 1/2=1/8, stąd P(B C) P(B) P(C) P(Z), czyli zdarzenia B,C i Z nie są niezależne.

41 Prawdopodobieństwo całkowite

42 Twierdzenie Jeżeli zdarzenia losowe A 1,..., A n stanowią podział przestrzeni zdarzeń elementarnych, oraz P(A i )>0, dla i =1,2...n to dla dowolnego zdarzenia B w tej przestrzeni zachodzi równość: P(B)=P(A 1 )P(B|A 1 )+P(A 2 )P(B|A 2 )+...+P(A n )P(B|A n ).

43 Wzór Bayesa

44 Twierdzenie Niech zdarzenia losowe A 1,...A n stanowią podział przestrzeni zdarzeń elementarnych, oraz P(A i )>0 dla i =1,2...n. Wtedy dla dowolnego zdarzenia B zachodzi wzór, zwany wzorem Bayesa: P(B|A i )P(A i ) P(A i |B) = P(A 1 )P(B|A 1 )+P(A 2 )P(B|A 2 )+...+P(A n )P(B|A n )

45 Przykład Kanałem łączności nadaje się tylko 3 rodzaje ciągów liter AAAA, BBBB, CCCC odpowiednio z prawdopodobieństwami 0,4; 0,3; 0,3. Wysyłane sygnały kodujące litery podlegają niezależnie losowym zakłóceniom. Prawdopodobieństwo poprawnego przesłania albo zakłócenia podaje tabela. (a) Znaleźć p-d odebrania na wyjściu sygnału ACAA. (b) Na wyjściu odebrano sygnał ACAA. Obliczyć prawdopodobieństwo, że został on nadany jako AAAA. ABC A0,80,1 B 0,80,1 C 0,8 S y g n a ł o d e b r a n y sygnałnadanysygnałnadany

46 Przykład (a) (b) AAAABBBBCCCC ACAA (0,8) 3 0,1 (0,1) 4 0,8 (0,1) 3 0,4 0,3 0,3

47 Schemat Bernoulliego

48 Definicja Niech D będzie pewnym doświadczeniem, w wyniku którego może zajść zdarzenie A lub zdarzenie przeciwne A'. Schematem Bernoulliego nazywamy serię n niezależnych powtórzeń tego samego doświadczenia D, dla pewnego nN. Wykonanie kolejnego doświadczenia D nazywa się próbą. Zajście zdarzenia A nazywa się sukcesem, a zajście zdarzenia A' - porażką.

49 Twierdzenie W schemacie Bernoulliego o n próbach prawdopodobieństwo otrzymania dokładnie k sukcesów jest równe gdzie k=0,1,2,...,n; n 1 oraz p jest prawdopodobieństwem sukcesu w jednej próbie.

50 Przykład Jeżeli przeciętnie 5 dni w ciągu tygodnia jest deszczowych, to jak duże jest p-d, że 2 spośród 3 dni będą pogodne?

51 Przykład Jeżeli przeciętnie 5 dni w ciągu tygodnia jest deszczowych, to jak duże jest p-d, że 2 spośród 3 dni będą pogodne? Przyjmijmy, że sukcesem jest wystąpienie pogodnego dnia. Wówczas mamy: n=3 (ilość prób), k=2 (ilość sukcesów), p=2/7 (p-d sukcesu)


Pobierz ppt "Rachunek prawdopodobieństwa 1 uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 2 wykładowca: dr Magdalena Kacprzak data: grudzień 2009 Materiały pomocnicze."

Podobne prezentacje


Reklamy Google