Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Rachunek prawdopodobieństwa 2 uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 2 wykładowca: dr Magdalena Kacprzak data: styczeń 2010 Materiały pomocnicze.

Podobne prezentacje


Prezentacja na temat: "Rachunek prawdopodobieństwa 2 uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 2 wykładowca: dr Magdalena Kacprzak data: styczeń 2010 Materiały pomocnicze."— Zapis prezentacji:

1 Rachunek prawdopodobieństwa 2 uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 2 wykładowca: dr Magdalena Kacprzak data: styczeń 2010 Materiały pomocnicze do wykładu

2 Zmienna losowa

3 Definicja Niech będzie przestrzenią zdarzeń elementarnych. Każdą funkcję określoną na zbiorze i o wartościach w zbiorze liczb rzeczywistych nazywać będziemy zmienną losową. Jeśli zmienna przyjmuje co najwyżej przeliczalną liczbę wartości, to będziemy ją nazywali zmienną losową dyskretną.

4 Przykład (a) Rozpatrzymy doświadczenie polegające na rzucie monetą. Wówczas możemy przyjąć następującą zmienną losową: X(orzeł)=0, X(reszka)=1 (b) Rozpatrzmy doświadczenie polegające na rzucie kostką do gry. Wówczas mamy następującą zmienna losową: X(1)=1, X(2)=2, X(3)=3,...,X(6)=6

5 Definicja Powiemy, że dwie zmienne losowe X i Y są niezależne wttw dla dowolnych przedziałów I, J zbioru liczb rzeczywistych P(XI i YJ) = P(XI)P(YJ) Jeśli zmienne X i Y są zmiennymi dyskretnymi, to niezależność zmiennych wyraża się warunkiem: P(X=x i Y=y)=P(X=x)P(Y=y) dla dowolnych x,y R.

6 Rozkład prawdopodobieństwa

7 Definicja Funkcję f X określoną na zbiorze liczb rzeczywistych R i o wartościach w zbiorze [0,1] taką, że f X (x)=P(X=x) dla xR nazywamy rozkładem prawdopodobieństwa zmiennej losowej X.

8 Przykład Rzucamy dwiema symetrycznymi kostkami do gry. Każdemu z rzutów przypisujemy wartość bezwzględną różnicy liczby oczek wyrzuconej na jednej i drugiej kostce. Podaj rozkład zmiennej losowej. UWAGA! p 0 +p 1 + p p 5 =1 xixi pipi 6/3610/368/366/364/362/36

9 Przykład

10 {(0,6/36), (1,10/36), (2,8/36), (3,6/36), (4,4/36), (5,2/36)} /36 8/36 6/36 4/36 2/36

11 Definicja Rozkładem dwumianowym (Bernoulliego) Nazywamy rozkład prawdopodobieństwa określony wzorem gdzie n - liczba prób, k – liczba sukcesów, p – p-d sukcesu dla k=0,1,...,n dla pozostałych wartości k

12 Przykład Wiadomo, że szansa poprawnego oznaczenia próbki w jednokrotnym badaniu mikroskopijnym wynosi 3:4. Poddano badaniu 3 próbki. Niech X oznacza liczbę próbek, które zostały poprawnie oznaczone. Wyznaczyć te prawdopodobieństwa.

13 Przykład xixi 0123 pipi 1/649/6427/64 p 0 +p 1 + p 2 +p 3 = 1/64+9/64+27/64+27/64=1

14 Definicja Rozkład prawdopodobieństwa określony wzorem f(k) = p(1-p) k-1 nazywamy rozkładem geometrycznym.

15 Przykład Rozważmy doświadczenie polegające na serii niezależnych rzutów symetryczną monetą powtarzanych dopóty dopóki nie wypadnie orzeł. Niech X będzie zmienną losową, której wartością jest liczba wykonanych prób do chwili uzyskania orła. Wyznacz rozkład prawdopodobieństwa. p=1/2,(1-p)=1/2,p(1-p) i-1 =(1/2)(1/2) i-1 =(1/2) i xixi i pipi 1/2(1/2) 2 (1/2) 3....(1/2) i....

16 Definicja Rozkład prawdopodobieństwa dyskretnej zmiennej losowej nazywamy jednostajnym (jednorodnym), jeśli przybiera ona wszystkie swoje wartości z takim samym prawdopodobieństwem.

17 Przykład Dwaj gracze grają w orła i reszkę. Jeśli wypadnie orzeł gracz G 1 płaci graczowi G 2 złotówkę. Jeśli wypadnie reszka, to gracz G 2 płaci graczowi G 1 złotówkę. Niech X będzie zmienną losową opisującą wygraną gracza G 1. Wyznacz rozkład prawdopodobieństwa. xixi 1 pipi 1/2

18 Dystrybuanta zmiennej losowej

19 Definicja Niech X będzie zmienną losową określoną na dowolnej przestrzeni zdarzeń losowych. Dystrybuantą zmiennej X nazywamy funkcję F:R [0,1] taką, że F X (x) = P(X x) dla xR.

20 Definicja W przypadku zmiennej losowej dyskretnej powyższy wzór przyjmuje postać F X (x) = yx f X (y) gdzie f X jest rozkładem prawdopodobieństwa zmiennej X.

21 Przykład Do tarczy oddaje się w sposób niezależny 3 strzały. P-d trafienia do tarczy wynosi ½ dla każdego strzału. Niech zmienna losowa X oznacza liczbę trafień w tarczę. Wyznaczyć dystrybuantę zmiennej losowej. X (-,0) [0,1)(1,2](2,3] (3,+ ) F(x)01/84/87/81 xixi 0123 pipi 1/83/8 1/8

22 Przykład F(2)=P(X 2)=P(X=2)+P(X=1)+P(X=0)=3/8+3/8+1/8=7/ /8 1/2 1/8

23 Lemat Dystrybuanta zmiennej losowej dyskretnej jest funkcją niemalejącą. Co więcej, dystrybuanta zmiennej losowej rośnie skokowo w punktach należących do zbioru wartości tej zmiennej.

24 PARAMETRY ROZKŁADU

25 Wartość oczekiwana zmiennej losowej

26 Definicja Niech będzie przestrzenią zdarzeń elementarnych, a X zmienną losową określoną w. Wartością oczekiwaną zmiennej X nazywamy liczbę E(X) = w X(w) P({w})

27 Stwierdzenie Jeśli wszystkie zdarzenia elementarne są jednakowo prawdopodobne, a przestrzeń jest skończona, to P({w}) = 1/||, a wtedy

28 Lemat Niech X będzie zmienną losową dyskretną określoną w pewnej przestrzeni zdarzeń elementarnych oraz niech (x i ) iI będzie ciągiem wszystkich różnych wartości jakie przyjmuje ta zmienna. Jeżeli suma i (x i P(X=x i )) jest określona, to

29 Przykład Zakładając, że liczba wezwań górskiego pogotowia ratunkowego w ciągu doby ma następujący rozkład (a) obliczyć p-d, że w ciągu doby liczba wezwań będzie wynosić od 2 do 4 P(2X4)=P(X=2)+P(X=3)+P(X=4)=0,18+0,15+0,12=0,45 (b) obliczyć oczekiwaną liczbę wezwań w ciągu doby E(X)=00,12+10,32+20,18+30,15+40,12+50,08+60,003=2,19 X=x i P(X=x i )0,120,320,180,150,120,080,003

30 Suma zmiennych losowych Niech będzie ustaloną przestrzenią zdarzeń, w której mamy określone dwie zmienne losowe dyskretne X i Y. Suma zmiennych losowych X i Y jest zmienną losową Z, określoną dla dowolnego zdarzenia elementarnego w tej przestrzeni jako Z(w) = X(w)+Y(w). Jeśli zmienna X przyjmuje wartości x i dla iI, a zmienna Y przyjmuje wartości y j dla jJ, to zmienna Z przyjmuje jako swoje wartości liczby (x i +y j ) dla dowolnych iI i jJ.

31 Twierdzenie Niech będzie przestrzenią zdarzeń, w której określone są zmienne losowe X i Y. Jeśli wartości oczekiwane zmiennych X i Y istnieją, to dla dowolnego c zachodzą równości (1) E(cX) = cE(X), (2) E(X+Y) = E(X)+E(Y), (3) E(X - E(X)) = 0.

32 Iloczyn zmiennych losowych Analogicznie jak sumę zmiennych, można zdefiniować iloczyn zmiennych losowych X i Y określonych w tej samej przestrzeni. Przyjmujemy Z(w) = X(w) Y(w) dla w. Zmienna Z przyjmuje jako swoje wartości iloczyny x iy j dla i I i j J, jeśli x i i y j są wartościami zmiennych X i Y odpowiednio.

33 Twierdzenie Jeśli X i Y są niezależnymi zmiennymi losowymi, to E(XY) = E(X)E(Y).

34 Wariancja zmiennej losowej

35 Definicja Wariancją zmiennej losowej X, oznaczaną przez V(X), nazywamy wartość oczekiwaną zmiennej losowej (X-EX) 2, tzn. V(X) = E((X-EX) 2 ) Jeśli X jest zmienną dyskretną o rozkładzie prawdopodobieństwa {(x i,p i )} i=1,...n, oraz E(X) = m, to V(X) = (x 1 - m) 2 p (x n - m) 2 p n

36 Twierdzenie Dla dowolnej zmiennej losowej dyskretnej (1) V(X) = E(X 2 ) - (E(X)) 2 (2) dla dowolnego cE(X), V(X)

37 Twierdzenie Jeżeli V(X) jest wariancją zmiennej losowej dyskretnej X, a V(Y) jest wariancją zmiennej losowej dyskretnej Y, to dla dowolnej stałej rzeczywistej c, (1) V(cX) = c 2 V(X), (2) Jeśli zmienne losowe X i Y są niezależne, to V(X+Y)= V(X) + V(Y).

38 Definicja Liczbę nazywamy odchyleniem standardowym zmiennej X.

39 Przykład Zakładając, że liczba wezwań górskiego pogotowia ratunkowego w ciągu doby ma następujący rozkład Obliczyć wariancje i odchylenie standardowe. Wiemy, że E(X)=2,19, E(X 2 )=00,12+10,32+40,18+90,15+160,12+250,08+360,003= 6,418. Stąd V(X)=6,418-(2,19) 2 =1,6219 oraz X=x i P(X=x i )0,120,320,180,150,120,080,003

40 Parametry znanych rozkładów prawdopodobieństwa

41 Lemat Niech X będzie zmienną losową o rozkładzie zerojedynkowym P(X=1) = p i P(X=0) = 1-p. Wtedy E(X)=p oraz V(X)=p(1-p).

42 Przykład Rozważmy następującą grę. Gracz rzuca monetą, jeśli wypadnie reszka otrzymuje 1 zł jeśli wypadnie orzeł o trzymuje 0 zł. Niech X będzie zmienną losową, której wartością jest otrzymana kwota pieniędzy. Wyznacz wartość oczekiwaną, wariancję i odchylenie standardowe.

43 Przykład Rozważmy następującą grę. Gracz rzuca monetą, jeśli wypadnie reszka otrzymuje 1 zł jeśli wypadnie orzeł otrzymuje 0 zł. Niech X będzie zmienną losową, której wartością jest otrzymana kwota pieniędzy. Wyznacz wartość oczekiwaną, wariancję i odchylenie standardowe. xixi 01 pipi 1/2 E(X)=p=1/2 V(X)=p(1-p)=1/21/2=1/4 (V(X))=1/2 p=1/2

44 Lemat Niech zmienna losowa X opisuje liczbę sukcesów w schemacie Bernoulliego z parametrami n i p (n – ilość prób, p- prawdopodobieństwo sukcesu). Wtedy E(X)=np oraz V(X)=np(1-p).

45 Przykład Wiadomo, że szansa poprawnego oznaczenia próbki w jednokrotnym badaniu mikroskopijnym wynosi 3:4. Poddano badaniu 3 próbki. Niech X oznacza liczbę próbek, które zostały poprawnie oznaczone. Wyznaczyć wartość oczekiwaną, wariancję i odchylenie standardowe.

46 Przykład Wiadomo, że szansa poprawnego oznaczenia próbki w jednokrotnym badaniu mikroskopijnym wynosi 3:4. Poddano badaniu 3 próbki. Niech X oznacza liczbę próbek, które zostały poprawnie oznaczone. Wyznaczyć wartość oczekiwaną, wariancję i odchylenie standardowe. xixi 0123 pipi 1/649/6427/64 E(X)=np=33/4=9/4=2,25 V(X)=np(1-p)= 33/41/4=9/16 (V(X))=3/4=0,75 n=3, p=3/4

47 Lemat Niech zmienna X ma rozkład geometryczny, tzn. rozkład określony następująco: f X (k)=P(X=k)=p(1-p) k-1 dla k=1,2,3,... Wtedy wartość oczekiwana zmiennej X, EX=1/p.

48 Przykład Rozważmy doświadczenie polegające na serii niezależnych rzutów symetryczną monetą powtarzanych dopóty dopóki nie wypadnie orzeł. Niech X będzie zmienną losową, której wartością jest liczba wykonanych prób do chwili uzyskania orła. Wyznacz wartość oczekiwaną.

49 Przykład Rozważmy doświadczenie polegające na serii niezależnych rzutów symetryczną monetą powtarzanych dopóty dopóki nie wypadnie orzeł. Niech X będzie zmienną losową, której wartością jest liczba wykonanych prób do chwili uzyskania orła. Wyznacz wartość oczekiwaną. p=1/2,(1-p)=1/2, xixi i pipi 1/2(1/2) 2 (1/2) 3....(1/2) i.... EX=1/p=1/(1/2)=2


Pobierz ppt "Rachunek prawdopodobieństwa 2 uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 2 wykładowca: dr Magdalena Kacprzak data: styczeń 2010 Materiały pomocnicze."

Podobne prezentacje


Reklamy Google