Niepewność
Niepewność Niepewność (przyszłe ceny, zdarzenia, choroba itp.) Jakie są racjonalne sposoby radzenia sobie z niepewnością? ubezpieczenia (zdrowotne, na życie, samochodowe itp.) dywersyfikacja.
Stany natury Możliwe stany natury: “wypadek samochodowy” (a) “brak wypadku” (na). Pr. Wypadku = a, Pr. Braku wypadku=na ; a + na = 1. Wypadek powoduje stratę $L. Ubezpieczyciel wypłaca odszkodowanie jedynie kiedy wypadek miał miejsce (kontrakt warunkowy) Konsumpcja uzależniona od przyszłych stanów, tj. konsumpcja warunkowa.
Warunkowe ograniczenie budżetowe Każda złotówka szkody (wypłaconego ubezpieczenia) kosztuje . m – dochód konsumenta Cna – konsumpcja kiedy zdarzenie nie zachodzi Ca – konsumpcja kiedy wypadek ma miejsce
Warunkowe ograniczenie budżetowe Cna Ca
Warunkowe ograniczenie budżetowe Cna Warunkowa konsumpcja bez ubezpieczenia 20 17 Ca
Warunkowe ograniczenie budżetowe Konsumpcja bez ubezpieczenia, Ca = m - L Cna = m.
Warunkowe ograniczenie budżetowe Cna Zasób początkowy m Ca Masz możliwość wykupienia ubezpieczenia. Jak będzie wyglądało warunkowe ograniczenie budżetowe?
Warunkowe ograniczenie budżetowe Polisa ubezpieczeniowa o wartości $K Cna = m - K Ca = m - L - K + K = m - L + (1- )K K = (Ca - m + L)/(1- ) Cna = m - (Ca - m + L)/(1- )
Warunkowe ograniczenie budżetowe Cna Zasób początkowy m Który punkt jest optymalny? Ca
Preferencje w warunkach niepewności Loteria Możesz wygrać $90 z p=1/2 lub $0 z p= 1/2. U($90) = 12, U($0) = 2. Ile wynosi użyteczność oczekiwana? Ile wynosi wartość oczekiwana wygranej na loterii?
Preferencje w warunkach niepewności
Preferencje w warunkach niepewności EU = 7 i EM = $45. U($45) > 7 $45 (woli wartość oczekiwaną z p=1 niż grę) niechętny ryzyku (awersja do ryzyka) U($45) < 7 woli grę niż wartość oczekiwaną z p=1 lubi ryzyko U($45) = 7 neutralny względem ryzyka
Preferencje w warunkach niepewności 12 EU=7 2 $0 $45 $90 Dochód
Preferencje w warunkach niepewności U($45) > EU awersja do ryzyka 12 U($45) EU=7 2 $0 $45 $90 Dochód
Preferencje w warunkach niepewności U($45) > EU awersja do ryzyka 12 U($45) Malejąca krańcowa użyteczność dochodu! EU=7 2 $0 $45 $90 Dochód
Preferencje w warunkach niepewności 12 EU=7 2 $0 $45 $90 Dochód
Preferencje w warunkach niepewności U($45) < EU lubi ryzyko 12 EU=7 U($45) 2 $0 $45 $90 Dochód
Preferencje w warunkach niepewności U($45) < EU lubi ryzyko 12 MU rośnie wraz ze wzrostem dochodu EU=7 U($45) 2 $0 $45 $90 Dochód
Preferencje w warunkach niepewności 12 EU=7 2 $0 $45 $90 Dochód
Preferencje w warunkach niepewności U($45) = EU neutralny względem ryzyka 12 U($45)= EU=7 2 $0 $45 $90 Dochód
Preferencje w warunkach niepewności U($45) = EU neutralny względem ryzyka 12 U($45)= EU=7 MU stałe wraz ze wzrostem dochodu 2 $0 $45 $90 Dochód
Preferencje w warunkach niepewności Cna EU1 < EU2 < EU3 EU3 EU2 EU1 Ca
Preferencje w warunkach niepewności c1 z p=1 i c2 z p= 2 (1 + 2 = 1). EU = 1U(c1) + 2U(c2). Dla stałego EU, dEU = 0 => MRS?
Preferencje w warunkach niepewności
Preferencje w warunkach niepewności Cna EU1 < EU2 < EU3 EU3 EU2 EU1 Ca
Optymalny wybór w warunkach niepewności Warunkowy plan konsumpcji, który zapewnia najwyższy poziom użyteczności przy danym warunkowym ograniczeniu budżetowym.
Warunkowe ograniczenie budżetowe Cna Zasób początkowy m Racjonalny wybór? Ca
Warunkowe ograniczenie budżetowe Cna Zasób początkowy m Optymalny wybór? Osiągalne plany Ca
Warunkowe ograniczenie budżetowe Cna Optymalny wybór m MRS = Nachyleniu ograniczenia budżetowego Ca
Ubezpieczenie 'uczciwe' Nie ma barier wejścia Oczekiwany ekonomiczny zysk= 0. Zapisz zysk firmy ubezpieczeniowej
Ubezpieczenie 'uczciwe' Brak barier wejścia Oczekiwany ekonomiczny zysk= 0. => K - aK - (1 - a)0 = ( - a)K = 0. = a. Koszt ubezpieczenia 1 zł szkody () = pr. zdarzenia (a) => ubezpieczenie 'uczciwe'
Ubezpieczenie 'uczciwe' m = 36 L= 11 a= 0.1 K – koszt ubezpieczenia o wartości K Ubezpieczenie jest 'uczciwe' Czy osoba z awersją (U(m)=m^0.5) do ryzyka wykupi pełne ubezpieczenie? Czy osoba lubiąca ryzyko (U(m)=m^2) do ryzyka wykupi pełne ubezpieczenie?
Ubezpieczenie 'uczciwe' Jeżeli ubezpieczenie jest 'uczciwe', to optymalny wybór spełnia warunek: Krańcowa użyteczność dochodu musi być identyczna w obu stanach.
Ubezpieczenie 'uczciwe' Czy racjonalny konsument z awersją do ryzyka wykupi pełne ubezpieczenie? Awersja do ryzyka MU(c) gdy c . Pełne ubezpieczenie
Ubezpieczenie wg stawki ‘nieuczciwej’ Oczekiwany ekonomiczny zysk > 0 I.e. K - aK - (1 - a)0 = ( - a)K > 0. Wtedy > a Optymalny wybór:
Ubezpieczenie wg stawki ‘nieuczciwej’ Optymalny wybór => osoba z awersją do ryzyka nie wykupi pełnego ubezpieczenia.
Dywersyfikacja ryzyka Dwie firmy, A i B. Udziały kosztują $10. Z Pr 1/2 zysk firmy A wynosi $100, a firmy B $20. Z Pr 1/2 zysk firmy B wynosi $100, a firmy A $20. Dysponujesz 100 $, jak optymalnie zainwestować?
Rozkładanie ryzyka 100 osób z awersją do ryzyka może ponieść stratę $10,000. Pr straty= 0.01. Początkowy zasób $40,000. Ile wynosi oczekiwana wartość majątku
Oczekiwany majątek
Rozkładanie ryzyka Oczekiwana strata Każda ze 100 osób wpłaca 1$ do wspólnego funduszu Wartość oczekiwana majątku: