Funkcje trygonometryczne - wiadomości teoretyczne

Slides:



Advertisements
Podobne prezentacje
TRYGONOMETRIA SFERYCZNA
Advertisements

KLASYFIKACJA TRÓJKĄTÓW ZE WZGLĘDU NA BOKI I KĄTY
Opracowała: Maria Pastusiak
Studia Podyplomowe „Informatyka” dla Nauczycieli
TRÓJKĄTY Opracowała: Teresa GĘBICKA.
TRÓJKĄTY Karolina Szczypta.
Pytanie 1.     Co to za trójkąt, który ma jeden kąt prosty?
KLASYFIKACJA TRÓJKĄTÓW Asia Niemiro klasa IIa gim.
Okręgiem o środku O i promieniu r nazywamy zbiór punktów płaszczyzny, których odległości od punktu O są równe r r - promień okręgu. r O O - środek.
Klasyfikacja Trójkątów. Klasyfikacja trójkątów..
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Trójkąty.
Spis treści : Definicja trójkąta Definicja trójkąta Definicja trójkąta Definicja trójkąta Własności Własności Własności Podział trójkątów ze względu na.
materiały dydaktyczne dla klasy piątej
TRÓJKĄTY I ICH WŁASNOŚCI
Figury geometryczne Opracowała: mgr Maria Różańska.
TRÓJKĄTY.
Funkcja tangens i cotangens
1. Wynikiem działania - 6 ( - ) 2 jest liczba : a ) b ) - c ) - d ) 2. Komputer kosztuje 3400 zł. Od tej kwoty trzeba zapłacić 22 % podatku VAT. Podatek.
WIELOKĄTY PRZYKŁADY WIELOKĄTÓW TRÓJKĄTY CZWOROKĄTY WIELOKĄTY FOREMNE.
„Własności figur płaskich” TRÓJKĄTY
FUNKCJE TRYGONOMETRYCZNE
CZWOROKĄTY ZADANIA.
Trójkąty ich rodzaje i własności
na poziomie rozszerzonym
Trójkąty - ich właściwości i rodzaje
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Trójkąty i ich własności
Trójkąty.
FUNCJA ODWROTNA   Funkcja przyporządkowująca wartościom jakiejś funkcji jej odpowiednie argumenty, czyli działająca odwrotnie do niej.
Trójkąty.
Jaki kąt nazywamy kątem ostrym ?
TRÓJKĄTY Opracowała: Renata Pieńkowska.
Trójkąty.
Rodzaje i podstawowe własności trójkątów i czworokątów
Funkcje trygonometryczne kąta ostrego
TRÓJKĄTY Autor: Anna Mikuć START.
KLASYFIKACJA TRÓJKĄTÓW
Opracowała: Iwona Kowalik
Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym.
Materiały pochodzą z Platformy Edukacyjnej Portalu
Funkcje trygonometryczne dowolnego kąta.
Rodzaje trójkątów Opracowała: Mariola Grzybowska.
Trójkąty Co to jest? Jakie ma własności i wzory?
Prezentacja dla klasy II gimnazjum
WITAMY W ŚWIECIE MATEMATYKI
Przypomnienie wiadomości o figurach geometrycznych.
WŁASNOŚCI FIGUR PŁASKICH
KLASYFIKACJA TRÓJKĄTÓW
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
FIGURY PŁASKIE Autorzy: Agata Kwiatkowska Olga Siewiorek kl. I a Gimnazjum Nr 2 w Trzebini.
Podział trójkątów ze względu na boki i kąty.
Własności figur płaskich
Pola i obwody figur płaskich.
Najważniejsze twierdzenia w geometrii
Opracowała: Marta Bożek
Pitagoras.
Prezentacja dla klasy V szkoły podstawowej
Funkcje trygonometryczne dowolnego kąta
Trójkąty Katarzyna Bereźnicka
Opracowanie Joanna Szymańska Konsultacja Bożena Hołownia.
TRYGONOMETRIA. SPIS TREŚCI TROCHĘ HISTORII FUNKCJE TRYGONOMETRYCZNE FUNKCJE TRYGONOMETRYCZNE W TRÓJKĄCIE PROSTOKĄTNYM SINUS COSINUS TANGENS COTANGENS.
FUNKCJE TRYGONOMETRYCZNE PODSTAWOWYCH KĄTÓW OSTRYCH.
FIGURY PŁASKIE.
Okrąg opisany na trójkącie.
Czworokąty i ich własności
Opracowała : Ewa Chachuła
FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO W TRÓJKĄCIE PROSTOKĄTNYM
opracowanie: Ewa Miksa
Zapis prezentacji:

Funkcje trygonometryczne - wiadomości teoretyczne Bożena Skorłutowska Nauczyciel matematyki Gimnazjum nr 5 im. Z. Padlewskiego w Płocku Funkcje trygonometryczne - wiadomości teoretyczne Dobranym układem współrzędnych do kąta α nazywamy taki układ współrzędnych , że kąt α zawiera się w pierwszej ćwiartce układu współrzędnych oraz jedno z ramion tego kąta pokrywa się z dodatnią półosią osi X . Ramię kąta α pokrywające się z dodatnią półosią osi X nazywamy pierwszym ramieniem tego kąta , ramię pozostałe – drugim ramieniem. Y P=(x,y) r α • X P’=(x,0)

α Cosinus α = cos α Tangens α = tg α Cotangens α = ctg α Niech α będzie kątem z dobranym układem współrzędnych , P=(x,y) – dowolnym punktem (różnym od punktu 0 ) na drugim ramieniu tego kąta. SINUSEM kąta α nazywamy liczbę , gdzie r= jest odległością punktu P od początku układu współrzędnych. COSINUSEM kąta α nazywamy liczbę , gdzie r= jest odległością punktu P od początku układu współrzędnych. TANGENSEM kąta α nazywamy liczbę , tzn. iloraz drugiej współrzędnej punktu P przez jego pierwszą współrzędną . COTANGENSEM kąta α nazywamy liczbę , tzn. iloraz pierwszej współrzędnej punktu P przez jego drugą współrzędną. B ß c a α • A C b Sinus α = sin α Cosinus α = cos α Tangens α = tg α Cotangens α = ctg α

SINUSEM kąta ostrego w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej leżącej naprzeciw tego kąta do długości przeciwprostokątnej. Sin α = Sin = ß COSINUSEM kąta ostrego w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej leżącej przy kącie do długości przeciwprostokątnej. cos α = cos = ß TANGENSEM kąta ostrego w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej leżącej naprzeciw kąta do długości drugiej przyprostokątnej. tg α = tg = ß COTANGENSEM kąta ostrego w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej leżącej przy kącie do długości drugiej przyprostokątnej. ctg α = ctg β = Nie istnieje tangens kąta o mierze 90o. Nie istnieje cotangens kąta o mierze 0o. sin α = cos (90 - β) cos α = sin (90 - β) tg α = ctg (90 - β) ctg α = tg (90 - β) Jedynka trygonometryczna sin2α + cos2α = 1

tg α = ctg α = ctg α = tg α = tg α • ctg α = 1 Przy wzroście kąta ostrego od 0o do 90o wartość funkcji sinus rośnie od 0 do 1, cosinus maleje od 1 do 0, tangens rośnie od 0 do + cotangens maleje od + do 0 . Wartości funkcji sinus i cosinus kątów ostrych mogą być tylko liczbami dodatnimi , mniejszymi od jedności. Znajomość wartości funkcji trygonometrycznych kątów ostrych w trójkącie prostokątnym umożliwia obliczenie długości boków i miar kątów w tym trójkącie oraz w innych wielokątach , a także rozwiązywanie zadań o charakterze praktycznym.