Dane INFORMACYJNE (do uzupełnienia)

Slides:



Advertisements
Podobne prezentacje
Prędkość początkowa Vo
Advertisements

WYKŁAD 2 I. WYBRANE ZAGADNIENIA Z KINEMATYKI II. RUCH KRZYWOLINIOWY
Wykład 4 2. Przykłady ruchu 1.5 Prędkość i przyśpieszenie c.d.
Opracował: Karol Kubat I kl.TŻ
GPS a teoria względności Einsteina
Temat: Ruch jednostajny
Jednostki astronomiczne
Projekt „AS KOMPETENCJI’’
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE Nazwa szkoły:
Temat : Ruch. Temat : Ruch DANE INFORMACYJNE Nazwa szkoły : ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH im. STANISŁAWA STASZICA ID grupy : 97_7_MF_G1 Opiekun:
Dane INFORMACYJNE Nazwa szkoły:
KINEMATYKA Kinematyka zajmuje się związkami między położeniem, prędkością i przyspieszeniem badanej cząstki – nie obchodzi nas, skąd bierze się przyspieszenie.
Kinematyka.
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
1.
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
Nazwa szkoły: ZSO NR 5 GIMNAZJUM NR 17 ID grupy: 98/5_MF_G2 Opiekun: Jolanta Bogulas Kompetencja: Matematyczno- Fizyczna Temat projektowy: WSZECHOBECNY.
„Zbiory, relacje, funkcje”
Nazwa szkoły: Publiczne Gimnazjum im. Książąt Pomorza Zachodniego w Trzebiatowie ID grupy: 98/46_MF_G1 Kompetencja: Zajęcia projektowe, komp. Mat.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
FIZYKA dla studentów POLIGRAFII Wykład 2
Temat: Przyspieszenie średnie i chwilowe
Prędkość początkowa Vo
Cele lekcji: Poznanie poglądów Arystotelesa na ruch ciał i ich spadanie. Poznanie wniosków wynikających z eksperymentów Galileusza. Wykazanie, że spadanie.
Nieinercjalne układy odniesienia
Ruch i jego opis Dział I.
Moja droga do szkoły.
Dane INFORMACYJNE Nazwa szkoły: Gimnazjum w Polanowie im. Noblistów Polskich ID grupy: 98/49_MF_G1 Kompetencja: Fizyka i matematyka Temat.
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Fizyka-Dynamika klasa 2
Kinematyka SW Sylwester Wacke
Dane INFORMACYJNE Gimnazjum im. Mieszka I w Cedyni ID grupy: 98_10_G1 Kompetencja: Matematyczno - fizyczna Temat projektowy: Ciekawa optyka Semestr/rok.
Opracowała Diana Iwańska
Ruch i jego opis Powtórzenie.
GIMNAZJUM IM. MIESZKA I W CEDYNI MATEMATYCZNO - FIZYCZNA
ZROZUMIEĆ RUCH Dane INFORMACYJNE Międzyszkolna Grupa Projektowa
Nazwa szkoły: Gimnazjum nr 58 im. Jana Nowaka Jeziorańskiego w Poznaniu ID grupy: 98/62_MF_G2 Opiekun Aneta Waszkowiak Kompetencja: matematyczno- fizyczna.
Dane Informacyjne ID grupy: 97/41_UGP_2 Zespół Szkół nr 5 w Szczecinku
Dane INFORMACYJNE: Nazwa szkoły:
Dane INFORMACYJNE (do uzupełnienia)
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
podsumowanie wiadomości
Spis treści 1. Dane informacyjne 2. Co to jest gęstość? 3. Przyrządy do mierzenia gęstości 4. Układ SI 5. Archimedes 6. Prawo Archimedesa 7. Zadanie z.
Dane informacyjne : ID grupy: 98/60_MP_G2 Opiekun: Marzena Tes
Dane INFORMACYJNE (do uzupełnienia)
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Zależność siły ciężkości od masy Do sprężyny doczepiane są masy, sprężyny rozciąga się w jednakowych odstępach pod działaniem siły ciężkości.
Bez rysunków INFORMATYKA Plan wykładu ELEMENTY MECHANIKI KLASYCZNEJ
dr hab. inż. Monika Lewandowska
Ruch w polu centralnym Siły centralne – siłę nazywamy centralną, gdy wszystkie kierunki Jej działania przecinają się w jednym punkcie – centrum siły a)
Przygotowanie do egzaminu gimnazjalnego
RUCH W prezentacji znajdziesz: podział ruchów (slajdy 3 – 7)
Ruch jednostajny prostoliniowy i jednostajnie zmienny Monika Jazurek
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski 1 informatyka +
Elementy ruchu Względność ruchu.
Prawa Keplera Mirosław Garnowski Krzysztof Grzanka
Ruch jednowymiarowy Ruch - zmiana położenia jednych ciał względem innych, które nazywamy układem odniesienia. Uwaga: to samo ciało może poruszać się względem.
Dynamika punktu materialnego Dotychczas ruch był opisywany za pomocą wektorów r, v, oraz a - rozważania geometryczne. Uwzględnienie przyczyn ruchu - dynamika.
Dynamika ruchu obrotowego
Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych
Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych Zjawiska ruchu Często ruch zachodzi z tak dużą lub tak małą prędkością i w tak krótkim lub.
Zjawiska ruchu Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych Często ruch zachodzi z tak dużą lub tak małą prędkością i w tak krótkim lub.
FIZYKA KLASA I F i Z Y k A.
1.
3. Siła i ruch 3.1. Pierwsza zasada dynamiki Newtona
FIZYKA dla I roku biotechnologii, studia I stopnia
2. Ruch 2.1. Położenie i tor Ruch lub spoczynek to pojęcia względne.
Zapis prezentacji:

Dane INFORMACYJNE (do uzupełnienia) Nazwa szkoły: Gimnazjum nr 24 w ZS nr 2 w Szczecinie ID grupy:98/86 Opiekun: Monika Pieniak Kompetencja: Matematyczno-fizyczna Temat projektowy: Zrozumieć ruch Semestr/rok szkolny: 2/2010/2011 1

Zrozumieć ruch

Co to jest ruch ? ? ? Ruch to zmiana położenia ciała w stosunku do innego ciała traktowanego jako układ odniesienia

Jak to się zaczęło . . . Od najdawniejszych czasów ludzie obserwowali zmiany zachodzące w otaczającym ich świecie. Zmieniały się pory roku, zmieniała przyroda, zmieniali się i oni sami, podlegając procesowi starzenia się. Jednym z pierwszych filozofów, którzy starali się zrozumieć i opisać zmienność świata, był filozof grecki Heraklit z Efezu (około 540- 480 roku p.n.e), autor słynnego powiedzenia panta rei (wszystko płynie), obrazującego nieustanne zmiany zachodzące w przyrodzie. Ze zmianami wiązano też zjawisko ruchu, jedno z ważniejszych zagadnień będących przedmiotem zainteresowania filozofów w starożytnej Grecji. Istotną trudność sprawiało antycznym myślicielom powiązanie pojęcia położenia z pojęciem ruchu. Doprowadziło to do sformułowania przez Zenona z Elei (około 490-430 roku p.n.e) słynnych czterech paradoksów, czyli pozornych sprzeczności w opisie ruchu. Jednym z nich był paradoks żółwia i Achillesa. Achilles, bohater Iliady Homera, jeden z najdzielniejszych Greków walczących pod Troją, nigdy nie dogoni żółwia, jeśli żółw nieco wcześniej rozpocznie wyścig. Gdy Achilles dobiegnie do miejsca, z którego wystartował żółw, żółwia już tam nie będzie, bo przesunął się w tym czasie w inne miejsce. Achilles musi znów dobiec w miejsce, gdzie żółw był przed chwilą, ale ten przesunął się już do przodu. Taka sytuacja będzie się ciągle powtarzać. Goniącego i uciekającego zawsze będzie dzielić jakaś odległość. Najszybszy biegacz nigdy nie dogoni najwolniejszego.

Ciąg dalszy . . Zagadnieniem ruchu zajmował się też jeden z najwybitniejszych filozofów starożytnych- Arystoteles ze Stagiry (384-322 rok p.n.e). Według Arystotelesa ruchy ciał dzieliły się na naturalne i wymuszone. Do naturalnych zaliczał ruch ciał niebieskich oraz ruchy, dzięki którym ciała uzyskiwały swoje „naturalne” położenie. Dla ciał „ciężkich” naturalnym położeniem jest ziemia, więc spadają na nią, ciała „lekkie” takie jak dym z ogniska czy para wodna, unoszą się w górę, bo tam jest ich naturalne miejsce. Poglądy te uważano za słuszne przez prawie 2 tysiące lat, aż do XVII wieku, do czasów Galileusza, który wykazał, jak Arystoteles się mylił. Galileusz (1564-1642) był pierwszym fizykiem, który rozumiał rolę doświadczenia w badaniu zjawisk przyrody. Jako pierwszy stosował metodę badań obowiązującą dziś w naukach przyrodniczych, polegającą na doświadczalnym weryfikowaniu teorii naukowej. Galileuszowi zawdzięczamy m.in. Sformułowanie zasady względności ruchu, poprawny opis swobodnego spadania ciał, udowodnienie, że torem ruchu pocisku jest parabola. Przedstawiona tu krótka historia poglądów na ruch i jego przyczyny świadczy wyraźnie o tym, że tworzenie systemu wiedzy odbywa się powoli, krok po kroku, a poglądy antycznych filozofów, były niezbędnym ogniwem w procesie tworzenia dzisiejszej wiedzy o przyrodzie.

Ruch po okręgu Ruch po okręgu jest przykładem ruchu zachodzącego w dwóch wymiarach. Przy czym (oczywiście) torem ruchu po okręgu jest okrąg. Ruch ten zazwyczaj znacznie bardziej skomplikowany do opisania od ruchu prostoliniowego, m.in. dlatego, że mamy tu do czynienia ze składową przyspieszenia działającą prostopadle do kierunku ruchu. Gdyby chcieć dokładnie opisywać położenie punktu poruszającego się po okręgu posługując się kartezjańskim układem XY, wtedy trzeba by wciąż używać funkcji trygonometrycznych sinus i kosinus. Znacznie częściej stosowanym podejściem jest posługiwanie się w tym przypadku kątem obrotu. W oparciu o tę wielkość wprowadza się specjalny układ (różny od kartezjańskiego) – układ biegunowy (lub w wydaniu 3 - wymiarowym - walcowy). Prędkość w ruchu po okręgu może być liniowa =2rf lub kątowa =2f Na ciało w ruchu po okręgu działa siła dośrodkowa F=m²:r Przyspieszenie w tym ruchu wynosi a=²:r Najprostszym przypadkiem ruchu po okręgu jest ruch jednostajny po okręgu.

Ruch jednostajnie przyspieszony po linii prostej Jest to ruch, w którym prędkość zmienia się tak samo w każdej sekundzie, czyli przyspieszenie jest stałe a= t s=Vot+½a·t² V=Vo+at Wykres drogi od czasu 5)Wykres prędkości od czasu Vx Vo 6) Wykres przyspieszenia od czasu a t

Ruch jednostajnie opóźniony po linii prostej Jest to ruch, w którym przyspieszenie jest stałe, lecz zwrócone przeciwnie do wektora prędkości. 1)V=Vo-a·t 2) s=Vot-½at² 3) a=t Wykres a(t) Wykres V(t) Wykres S(t) a Vo t -a t t t

Prędkość początkowa Vo Przyspieszenie a Przyspieszenie informuje o tym jak szybko zmienia się prędkość Prędkość początkowa Vo a Dt Im większe jest przyspieszenie, tym dłuższy wektor jest dodawany do wektora prędkości początkowej. Prędkość końcowa Vk

Droga Jest to długość pewnego odcinka toru, czyli linii kreślonej przez dowolnie wybrany punkt poruszającego się ciała Symbol: s Jednostka: metr (m)

Ruch postępowy RUCH PROSTOLINIOWY RUCH JEDNOSTAJNY PO KRZYWEJ RUCH ZMIENNY PO KRZYWEJ RUCH JEDNOSTAJNY RUCH ZMIENNY RUCH PRZYSPIESZONY RUCH OPÓŹNIONY JEDNOSTAJNIE OPÓŹNIONY JEDNOSTAJNIE PRZYSPIESZONY NIEJEDNOSTAJNIE PRZYSPIESZONY NIEJEDNOSTAJNIE OPÓŹNIONY menu

Szybkość Określa jaką drogę przebywa ciało w jednostce czasu Jednostka: m/s Symbol: v

Przyspieszenie Określa, o ile zmienia się szybkość w jednostce czasu Jednostka: m/s2 Symbol: a

Przyspieszenie Jeśli prędkość zmienia się gwałtownie to przyspieszenie jest duże. Jeśli prędkość zmienia się powoli to przyspieszenie jest niewielkie. Jeśli prędkość nie zmienia się to przyspieszenie jest równe zeru. przyspieszenie = zmiana prędkości/czas a = v2-v1/t

Podział ruchów (1)

Podział ruchów (2)

Ruch jednostajny cechy droga jest proporcjonalna do czasu trwania ruchu prędkość ma stałą wartość przyspieszenie ma wartość zero

Ruch jednostajny wykresy

Ruch jednostajnie przyspieszony-cechy droga jest proporcjonalna do kwadratu czasu szybkość jest proporcjonalna do czasu przyspieszenie ma stałą dodatnią wartość

Ruch jednostajnie przyspieszony wykresy

Droga wzory s = vt s = vot + at2/2 s = vot - at2/2 Ruch jednostajny prostoliniowy s = vt Ruch jednostajnie przyspieszony s = vot + at2/2 Ruch jednostajnie opóźniony s = vot - at2/2

Szybkość wzory v = s/t v = vo+at v = vo-at Ruch jednostajny prostoliniowy v = s/t Ruch jednostajnie przyspieszony v = vo+at Ruch jednostajnie opóźniony v = vo-at Szybkość wzory

Czas Czas i jego jednostki Fizycy czas oznaczają we wzorach literą t od jego angielskiej nazwy "time". Niekiedy może on pomylić się z temperaturą też oznaczaną tą literą. Dlatego w niektórych wzorach czas oznaczany jest grecką literą "tau" τ. Sekunda Jednostką czasu w układzie SI jest sekunda [t] = s. Rodowód tej jednostki jest stosunkowo prosty do wymyślenia. Punktem wyjścia jest tu oczywiście naturalna jednostka czasu - doba, mająca 24 godziny, a w każdej godzinie jest 3600 sekund. Początkowo więc sekunda była zdefiniowana jako 1/86400 doby (24 razy 3600 = 86400). Jednak okazało się, że taka jednostka nie jest zbyt precyzyjna. Powodów jest kilka – pierwszy z nich, to np. fakt, że mamy aż dwie doby – dobę słoneczną i dobę gwiazdową, a różnią się one o prawie 4 minuty. Skąd ta różnica?

- doba Doba słoneczna odpowiada czasowi, w którym Ziemia tak okręci się wokół swojej osi, że dany punkt na jej powierzchni znajdzie się dokładnie na odcinku środek Ziemi – środek Słońca. Czyli będzie to np. czas od południa jednego dnia, do południa dnia następnego. Problem w tym, że gdyby ów punkt określać nie według położenia Słońca, ale względem jakiejś innej gwiazdy, to doba wyszłaby nam krótsza (właśnie o te niecałe 4 minuty). Wynika to z faktu, że Ziemia krąży wokół Słońca, a ruch po orbicie jest (gdy go obserwować z zewnątrz) także powiązany z pewną formą ruchu wirowego. Dzięki niemu przez rok nasza Planeta wykonuje jakby dodatkowy obrót wokół swojej osi. Ostatecznie więc dób gwiazdowych (liczonych względem gwiazd innych niż Słońce) jest w ciągu roku o jedną mniej niż słonecznych. Oczywiście ten problem wyznaczania sekundy można łatwo usunąć, precyzując o którą dobę chodzi. Dlatego też początkowo 1 sekunda była definiowana jako: 1/86 400 długości średniej doby słonecznej. Ale pojawia się następny problem sugerowany w tej definicji przez słowo „średniej”. Bo skoro „średniej”, to możemy się domyśleć, że doba może się zmieniać – nie jest stała. I tak właśnie jest - bardzo dokładne przyrządy wykazują zmiany prędkości ruchu wirowego Ziemi. Niestety, słowo „średnia” staje się przyczyną kolejnych nieścisłości – jaka to miałaby być średnia? – z wieku, z tysiąclecia, z którego wieku czy tysiąclecia?... Zegar słoneczny

KażdyDlatego dzisiaj uczeni posługują się jednostką niezależną od zjawisk astronomicznych. W układzie SI od roku 1967, jako wzorzec obowiązuje tzw. sekunda atomowa: Sekunda, s - jednostka czasu równa 9 192 631 770 okresom przejścia pomiędzy podpoziomami f = 3 i f = 4 struktury nadsubtelnej poziomu podstawowego 2s1/2 atomu 133Cs znajdującego się na poziomie morza. Definicja atomowa oparta jest o zjawisku emisji światła (dokładniej promieniowania elektromagnetycznego). Światło jest rodzajem drgań pola elektromagnetycznego, a każde takie drganie trwa określoną ilość czasu. Jeśli więc weźmiemy odpowiednią ilość takich drgań to dostaniemy w rezultacie niemal dowolny odstęp czasu (byle nie krótszy niż pojedyncze drganie). Okazuje się, że światło emitowane przez pierwiastek cez jest bardzo jednorodne i stabilne, dzięki czemu dobrze nadaje się na wzorzec. Żeby zaś ta nowa definicja sekundy dobrze zgadzała się ze starą, opartą na średniej dobie słonecznej trzeba wziąć właśnie 9 192 631 770 takich drgań Część definicji traktująca o podpoziomach struktury nadsubtelnej precyzuje po prostu o które promieniowanie atomu cezu chodzi. Ponieważ cez może wytwarzać różne rodzaje promieniowania (czyli różne barwy światła różniącego się czasem drgań), a każdy rodzaj promieniowania odpowiada przejściom pomiędzy różnymi poziomami energetycznymi, to należy uściślić, że chodzi o ten jeden konkretny rodzaj przejścia - czyli przejście z podpoziomu energetycznego o f = 3 na poziom o f = 4.

D Ł U G O Ś Ć Jednostka długości Standardowo, odległość (długość) mierzymy w metrach i oznaczam literą małe „em” - m. A cóż to jest jeden metr? - początkowo został on zdefiniowany jako 1/10 000 część ćwiartki ziemskiego południka (dlatego obwód Ziemi jest dziś równy dość dokładnie 40 000 km), później zdecydowano się na wzorzec związany z długością platyno – irydowej szyny zamkniętej w Sevres pod Paryżem (iryd – pierwiastek metaliczny – element stopu, z którego wykonano wzorzec), a od lat 80-tych XX wieku metr wynika z odległości jaką przebywa światło w próżni. D Ł U G O Ś Ć 1 metr jest równy drodze jaka przebywa w próżni światło w ciągu czasu 1/299792458 sekundy. Jednostki pochodne metra np.: 1 pm = 10-12 m 1 nm = 10-9 m 1 mm = 0,001 m = 10-3 m 1 cm = 0,01 m 1 km = 1000 m Inne jednostki odległości W niektórych krajach świata do pomiaru odległości stosuje się inne niż metr jednostki. 1 mila angielska = 1,609 km 1 mila morska = 1,852276 km 1 yard = 0,9144 m 1 jednostka astronomiczna (AU).   1 AU = 1,4959789 ∙ 1011 m

W astronomii najczęściej stosuje się jednostki oparte nie o metr, ale o czas w jakim światło przebywa drogę: rok świetlny - jest to odległość jaka światło przebywa w ciągu roku.  1R.ś. = 63240 AU = 9,4605 ∙ 1015 m jednostka astronomiczna (AU, j.a.) - wielkość równa średniej odległości od Ziemi do Słońca. Bardziej ściśle określa się ją jako długość wielkiej półosi orbity Ziemi wokół Słońca. 1 AU = 1,4959789 ∙ 1011 m. Pomiary odległości Do mierzenia odległości używa się różnych przyrządów w zależności od tego jaki obiekt, w jakich warunkach i jak dokładnie musimy wymierzać. Odległości centymetrowo – milimetrowe mierzymy najczęściej miarką, zwaną też przymiarem liniowym. W budownictwie do wyznaczania odległości używana jest specjalna rozkładana lub rozsuwana wersja miarki – przymiar składany lub taśma miernicza, a w geodezji taśma geodezyjna. Aby zmierzyć odległości zbliżone lub mniejsze od 1 mm, posługujemy się śrubą mikrometryczną, lub suwmiarką.

Tak wyglądała nasza praca na zajęciach