Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Estymatory parametru samoafiniczności procesów o długiej pamięci Sebastian Michalski Szkoła Główna Handlowa Warszawa, 25.05.2004 Microsoft.

Podobne prezentacje


Prezentacja na temat: "Estymatory parametru samoafiniczności procesów o długiej pamięci Sebastian Michalski Szkoła Główna Handlowa Warszawa, 25.05.2004 Microsoft."— Zapis prezentacji:

1 Estymatory parametru samoafiniczności procesów o długiej pamięci Sebastian Michalski Szkoła Główna Handlowa Warszawa, Microsoft PowerPoint 2003 Poprzednie wersje mogą nie wyświetlać animacji SENAMEK

2 Wymiar przestrzeni euklidesowej Liczba przypisana (zbiorowi) przestrzeni w taki sposób, aby punkt miał wymiar = 0, prosta wymiar = 1, płaszczyzna wymiar = 2; przestrzeń = 3. Liczba współrzędnych niezbędnych do określenia położenia punktu w zbiorze. W algebrze liniowej: n = dim(V) liczba będąca mocą jej bazy n liniowo niezależnych wektorów rozpinających przestrzeń, a dowolny układ n+1 wektorów jest liniowo zależny.

3 Uogólnienie pojęcia przestrzeni metrycznej: Przypisanie przestrzeni (zamiast odległości) rodziny zbiorów (topologii), którą stanowią sumy (również nieskończone) kul otwartych (zbiorów punktów odległych od środka o mniej niż promień) Przestrzeń topologiczna Wymiar topologiczny – wymiar pokryciowy Henri Lebesque Pokrycie obiektu przez D E wymiarowe kule o odpowiednio małym promieniu wymaga niepustego przecięcia minimalnie D T +1 kul. [Addison,1997]

4

5 Homeomorfizm to funkcja z jednej przestrzeni topologicznej w drugą mająca następujące własności: wzajemna jednoznaczność (bijekcja) ciągłość (przeciwobraz dowolnego zbioru otwartego w Y jest zbiorem otwartym w X) otwartość (obraz dowolnego zbioru otwartego jest zbiorem otwartym) Przestrzeń topologiczna Zachowanie własności homeomorficznych przestrzeni Przekształcenie, które może dowolnie rozciągać i wyginać obiekt, ale które nie może robić w nim "dziur" ani go rozrywać. Liczba dziur i przecięcie są niezmiennikami – nie mogą zostać zniszczone ani utworzone.

6 Przestrzeń topologiczna Przykład:

7 Przestrzeń topologiczna A R (A jest homeomorficzne z R) B 8 C I J L G V Z S W N M E F T Y D O 0 P 9 H K X 4 Przykład: Litery i cyfry pogrupowane w klasy równoważności homeomorfizmu

8 Wymiar fraktalny Georg Ferdinand Ludwig Philipp Cantor 1878 – bijektywne, ale nie ciągłe przekształcenie z odcinka jednostkowego [0,1] w kwadrat jednostkowy [0,1] x [0,1] Giuseppe Peano David Hilbert ciągłe, surjektywne ale nie injektywne przekształcenie z odcinka jednostkowego [0,1] w kwadrat jednostkowy [0,1] x [0,1]

9 Wymiar fraktalny Luitzen Egbertus Jan Brouwer 1911 – dowód: nie istnieje n wymiarowa jednostkowa kostka I n = [0,1] n, która jest homeomorficzna z kostką m wymiarową I m = [0,1] m, n m. Felix Hausdorff 1919 – wymiar Hausdorffa Benoit Mandelbrot 1977 – fraktal: obiekt, dla którego wymiar Hausdorffa przekracza jego wymiar topologiczny

10

11 Wymiar fraktalny Wymiar samopodobieństwa Mierzy ilość przestrzeni wypełnionej przez obiekt Dzielimy hiperprzestrzenny V * obiekt na N jednakowych części, które są samopodobne (miniatury całości) o długości ε. [Strecker, 2004]

12 Wymiar fraktalny Wymiar samopodobieństwa Przykład: Zbiór Cantora (1873)

13 Wymiar fraktalny Wymiar pojemnościowy, pudełkowy (box-counting)

14 Wymiar fraktalny Wymiar pojemnościowy, pudełkowy (box-counting)

15 Ruch Browna i ułamkowy ruch Browna Ruch Browna to funkcja B(t), taka że, dla Δt ΔB(t) są: niezależne, izotropiczne, losowe. H=1/2 dla ruchu Browna Stopień zintegrowania: Wymiar fraktalny:

16 Ruch Browna H=1/ – R. Brown 1900 – L.Bachelier A. Einstein i M. Smoluchowski 1923 – N. Wiener H>1/2H<1/2 Ułamkowy ruch Browna ścieżki

17 Ułamkowy ruch Browna

18 Ułamkowy szum gaussowski

19 Samopodobieństwo a samoafiniczność

20 Estymatory H Analiza przeskalowanego zakresu R/S Analiza dyspersionalna (dla fGn) Metoda wymiaru fraktalnego Analiza przeskalowanej wariancji w oknie Metody spektralne Estymatory autokorelacyjne

21 Estymatory H Partycje i okna D.C. Caccia, D. Percival, M.J. Cannon, G. Raymond, J.B. Bassingthwaighte, 1997 m obserwacji k=1k=2

22 Przeskalowany zakres R/S [H.E. Hurst, 1951] [B.B. Mandelbrot, J.R. Wallis,1968] [H.E. Hurst, R.P. Black, Y.M. Simaiki, 1965] [A.A. Annis, E.H. Lloyd, 1976] [J. Purczyński, 2003] Modyfikacje z trendem, bez trendu 10-point pox, Multipox Lo, 1991 [W. Feller, 1951]

23 Przeskalowany zakres R/S

24

25 Analiza dyspersjonalna Metoda absolutnych momentów (AM) n=1: metoda absolutnej średniej n=2: metoda zagregowanej wariancji J.B. Bassingthwaighte, R.B. King, S.A. Roger, 1989 H.E. Schepers, J.H.G.M. van Beek, J.B. Bassingthwaighte, 1992 D.C. Caccia, D. Percival, M.J. Cannon, G. Raymond, J.B. Bassingthwaighte, 1997

26 Zmiany strukturalne – skoki średniej i powoli wygasające trendy jako pozorna długa pamięć: wykładnicza AM o ujemnym wyrazie wolnym [Teverovsky, Taqqu, 1997] Różnicowanie wariancji + AM (DW+AM)

27 Metoda Wymiaru Fraktalnego – Higuchiego (H) [T. Higuchi, 1988, 1990]

28 Scaled Windowed Wariance - Standard (SWV-S) [B.B. Mandelbrot, 1985] Average Genralized Roughness (AGR) [J.G. Moreira, J. Kamphorst Leal da Silva, S.O. Kamphorst, 1994] Variable Bandwidth Method (VBM) [J. Schmittbuhl, J.P. Vilotte, and S. Roux, 1995] Scaled Windowed Wariance - Linear Detrended (SWV-L) [B.B. Mandelbrot, 1985] Detrended Fluctuation Analysis (DFA) [C.K. Peng, S.V. Buldyrev, M. Simons, H.E. Stanley, A.L. Goldberger, 1994] Roughness Around the Root Mean Square Line (RARMSL) [J.G. Moreira, J. Kamphorst Leal da Silva, S.O. Kamphorst, 1994] Residuals of Regression [M.S. Taqqu, V. Teverovsky, W. Willinger, 1995]

29 Metody spektralne Metoda periodogramu GPH [J. Geweke, S. Porter-Hudak,1983] f – częstotliwość, (najmniejszych 10%) Zmodyfikowana metoda periodogramu (MP) Częstotliwości są grupowane w równoodległe na skali log-log grupy i uśredniane. Estymacja: ucięta MNK (least-trimmed) – użycie połowy najmniejszych reszt (nie spełnia oczekiwań) [Taqqu, Teverovsky, Willinger 1996,1997] Metoda zwężonego periodogramu (tapered) (TGPH) Zmiany strukturalne a długa pamięć: jeżeli TP nie potwierdza długiej pamięci to wystąpiły zmiany strukturalne [P.Sibbertsen, 2002]

30 Metody spektralne Metoda periodogramu

31 Metody spektralne Średni skumulowany periodogram (ACP) - niskie częstotliwości z gładkiej części periodogramu Dla małych k zachodzi: MNK, ale nie graficznie – na skali log-log F nie jest liniowa [Taqqu, Teverovsky 1997]

32 Metody spektralne Estymator Whittlea - funkcja gęstości spektralnej o częstotliwości f Minimalizacjaze względu na Zagregowany estymator Whittlea agregacja skraca szereg i zwiększa wariancję estymatora ale zachowuje właściwości fGn [Taqqu, Teverovsky 1995]

33 Estymatory autokorelacyjne Metoda Kettaniego i Gubnera [H. Kettani, J. Gubner, 2002]

34 Metoda Kettaniego i Gubnera [P.Ciżkowicz, w druku, NBP 2004]

35 Generatory Rekurencyjna metoda Hoskinga Generator Davisa i Hartea (1987) Generator Vern Paxsona (1995) Metoda Syntezy Spektralnej Metoda Losowych Składników

36 Właściwości estymatorów

37 R/S – najbardziej obciążony z estymatorów o dużej wariancji: przeszacowuje wartość H o 0,15 dla H 0,7. Dla N<128 jest niewiarygodny: H=0,5: P(0,2

38 WIG20 0,58 WIG 0,61 WIG-Banki 0,60 WIG-Budownictwo 0,64 WIG-Informatyka 0,54 WIG-Spożywczy 0,74 Rynek kapitałowy , 2^9 obs.


Pobierz ppt "Estymatory parametru samoafiniczności procesów o długiej pamięci Sebastian Michalski Szkoła Główna Handlowa Warszawa, 25.05.2004 Microsoft."

Podobne prezentacje


Reklamy Google