Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Podpatruj ą c natur ę w poszukiwaniu z ł otej liczby.

Podobne prezentacje


Prezentacja na temat: "Podpatruj ą c natur ę w poszukiwaniu z ł otej liczby."— Zapis prezentacji:

1 Podpatruj ą c natur ę w poszukiwaniu z ł otej liczby

2 Koło matematyczne EUREKA Złotej liczby, pod kierunkiem Aleksandry Kozioł, szukały: Kalina, Dominika, Anita, Kinga, Kasia, Kamila, Agnieszka i nieobecna na zdjęciu Małgosia Gimnazjum nr 2 Głogów2006/07

3 Warto wiedzieć, że… Złoty podział, podział harmoniczny, boski podział Złoty podział, podział harmoniczny, boski podział to podział odcinka na dwie części tak, by stosunek długości dłuższej to podział odcinka na dwie części tak, by stosunek długości dłuższej z nich do krótszej był taki sam, jak całego odcinka do części dłuższej z nich do krótszej był taki sam, jak całego odcinka do części dłuższej Stosunek ten nazywa się złotą liczbą i oznacza się grecką literą φ. Stosunek ten nazywa się złotą liczbą i oznacza się grecką literą φ. φ = (a+b) : a = a : b

4 Złota liczba wynosi … Posiada ona ciekawe własności: Posiada ona ciekawe własności: aby podnieść ją do kwadratu, wystarczy dodać jedynkę. aby podnieść ją do kwadratu, wystarczy dodać jedynkę. aby znaleźć jej odwrotność, wystarczy odjąć jedynkę. aby znaleźć jej odwrotność, wystarczy odjąć jedynkę. Złota liczba kojarzy się współczesnym architektom ze starożytnością, kiedy była ona powszechnie obowiązującym kanonem piękna.

5 Graficzne obliczenie złotej liczby w programie Cabri Złota liczba wynosi … Złota liczba wynosi … Złota liczba

6 Złoty podział wokół nas

7 Wydaje się być rzeczą zastanawiającą dlaczego przez tysiące lat ludzie tak uparcie w przejawach swojej twórczości odwoływali się do tej wyjątkowej reguły matematycznej dostrzegając w jej wizualizacjach przejaw naturalnego piękna, doskonałej równowagi i harmonii. Częściową odpowiedź na to pytanie dał nam już Leonardo da Vinci w swoim Homo Vitruvius. Wydaje się być rzeczą zastanawiającą dlaczego przez tysiące lat ludzie tak uparcie w przejawach swojej twórczości odwoływali się do tej wyjątkowej reguły matematycznej dostrzegając w jej wizualizacjach przejaw naturalnego piękna, doskonałej równowagi i harmonii. Częściową odpowiedź na to pytanie dał nam już Leonardo da Vinci w swoim Homo Vitruvius.*** Złoty podział (zwany też boską proporcją – divina proportio) wyrażał się liczbą niewymierną, wynoszącą w przybliżeniu 1,618…. W starożytności, a także w okresie renesansu i klasycyzmu, w oparciu o złoty podział wyznaczano plany świątyń, wysokość i szerokość portyków, otworów okiennych, drzwi, kształty detali architektonicznych, obrazów i ksiąg. Złoty podział a człowiek

8 Linia I dzieli całą rzeźbę według złotej proporcji. Linia E wskazuje tę proporcję między głową a górną częścią tułowia. Linia O dzieli dolną część człowieka – złoty punkt na wysokości kolan Rzeźba Leocharesa

9 Złote proporcje raz jeszcze.. Złota proporcja jest po prostu częścią człowieka. Ale nie tylko proporcje naszego ciała (kończyny, korpus, głowa) zbudowane są wg tej reguły. Odnajdziemy ją również w proporcjach naszego uzębienia, naszej głowy, reki Złota proporcja jest po prostu częścią człowieka. Ale nie tylko proporcje naszego ciała (kończyny, korpus, głowa) zbudowane są wg tej reguły. Odnajdziemy ją również w proporcjach naszego uzębienia, naszej głowy, reki

10 Złote proporcje w przyrodzie Istotnie zdumiewające jest również umiejscowienie złotego podziału wśród roślin. Jeśli przyjrzymy się układowi listków na wspólnej łodydze, to okaże się, iż między każdymi dwiema parami listków trzecia leży w miejscu złotego cięcia. Istotnie zdumiewające jest również umiejscowienie złotego podziału wśród roślin. Jeśli przyjrzymy się układowi listków na wspólnej łodydze, to okaże się, iż między każdymi dwiema parami listków trzecia leży w miejscu złotego cięcia.

11 Architektura a złoty podział Partenon, Partenon, świątynia Ateny na akropolu w Atenach zbudowana w latach p.n.e. Fronton świątyni mieścił się w prostokącie, w którym stosunek boków wyrażał się złotą liczbą. Jeżeli weźmiemy przekrój Wielkiej Piramidy,to otrzymamy trójkąt prostokątny,nazywany „trójkątem egipskim”. Stosunek przeciwprostokątnej do podstawy wynosi 1,61804 i różni się od złotej liczby tylko o jeden na piątym miejscu po przecinku.

12 W czasach współczesnych, w dyscyplinach z pozoru odległych od sztuki - w projektowaniu i budowie maszyn - znajdziemy również piękne przykłady konstrukcji zgodnych z „boską proporcją”. W czasach współczesnych, w dyscyplinach z pozoru odległych od sztuki - w projektowaniu i budowie maszyn - znajdziemy również piękne przykłady konstrukcji zgodnych z „boską proporcją”. Złoty podział w technice

13 Złota proporcja w kosmosie Wzajemna zależność między odległością Wenus i Ziemi od Słońca to również złota proporcja: Wzajemna zależność między odległością Wenus i Ziemi od Słońca to również złota proporcja:

14 Złote liczby w przyrodzie Pestki w tarczy słonecznika układają się wzdłuż złotych spiral. Liczby nasion w tych spiralach to tzw. liczby Fibonacciego. Podobnie "upakowane" są nasiona w szyszkach. Pestki w tarczy słonecznika układają się wzdłuż złotych spiral. Liczby nasion w tych spiralach to tzw. liczby Fibonacciego. Podobnie "upakowane" są nasiona w szyszkach.

15 Złote figury geometryczne

16 Złoty kąt Złotym kątem jest kąt płaski, który w przybliżeniu wynosi 137,5 stopnia i nie da się go nigdy wyrazić ułamkiem zwykłym. Jego dopełnienie do 360° wynosi w przybliżeniu 5/8 kąta pełnego, dokładniej jest to 8/13 kąta pełnego, jeszcze dokładniej 13/21 Złotym kątem jest kąt płaski, który w przybliżeniu wynosi 137,5 stopnia i nie da się go nigdy wyrazić ułamkiem zwykłym. Jego dopełnienie do 360° wynosi w przybliżeniu 5/8 kąta pełnego, dokładniej jest to 8/13 kąta pełnego, jeszcze dokładniej 13/21 i tak dalej, ale żadna liczba wymierna nie odpowiada mu ściśle. Bracia Bravais badając rośliny zauważyli, że najczęściej występującym kątem dywergencji jest 137,5 stopnia. Wielkość ta odpowiada złotemu podziałowi kąta pełnego, to znaczy kąt pełny ma się tak do większej części podziału, jak większa część do mniejszej. Inaczej: stosunek większej do mniejszej części tego podziału równy jest liczbie złotej.

17 Złoty trójkąt i prostokąt Złoty trójkąt to taki trójkąt równoramienny, w którym długość ramienia do długości podstawy tego trójkąta jest złotą liczbą. Złotym prostokątem będziemy nazywać taki prostokąt, w którym stosunek długości do szerokości jest złotą liczbą

18 Pentagram z ukrytym złotym podziałem Idealny pentagram można narysować poprzez wyrysowanie przekątnych pięciokąta foremnego i następnie zamazać oryginał. Idealny pentagram można narysować poprzez wyrysowanie przekątnych pięciokąta foremnego i następnie zamazać oryginał. W pentagramie ukryty jest złoty podział φ = (1+√5)/2 = 1.618…. = Φ = czerwony = niebieski = zielony niebieski zielony fioletowy niebieski zielony fioletowy

19 Złote konstrukcje

20 Konstrukcje złotych figur wykonane w programie Cabri w każdym przypadku a do b jest złotą liczbą

21 Spiralą trójkątną nazwiemy taką konstrukcję, która wynika z utworzenia ćwierć łuków na trójkątach odcinanych kolejno w odpowiedni sposób ze złotego trójkąta. złotego trójkąta.

22 Konstrukcja Złotej spirali trójkątnej krok 1 krok 2 krok 4krok 3 krok 5 w programie Cabri

23 Spirala prostokątna to konstrukcja wynikająca z utworzenia ćwierć łuków na kwadratach odcinanych kolejno w odpowiedni sposób ze złotego prostokąta.

24 Konstrukcja złotej spirali prostokątnej krok 1krok 2 krok 3 krok 5 krok 4 w programie Cabri

25 Na zakończenie…

26 Test - powtórka Pytanie 1 Pytanie 1 Złoty podział nazywamy inaczej… Pytanie 2 Pytanie 2 Złota liczba jest równa 1,618033…. Jej kwadrat jest równy … Pytanie 3 Pytanie 3 Wymień przynajmniej dwa punkty wyznaczające złote proporcje w ciele człowieka Pytanie 4 Pytanie 4 Jaki prostokąt nazywamy złotym prostokątem Pytanie 5 Pytanie 5 Do konstrukcji złotych figur można wykorzystać program …… Odpowiedź 1 Odpowiedź 1 Boskim podziałem lub podziałem harmonicznym. Odpowiedź 2 Odpowiedź 22,618033… Odpowiedź 3 Odpowiedź 3 Np. podział całego ciała linią pępka, podział twarzy linią oczu. Odpowiedź 4 Odpowiedź 4 Prostokąt jest złoty, jeżeli stosunek długości jednego boku do długości drugiego wyraża się złotą liczbą. Odpowiedź 5 Odpowiedź 5Cabri

27 Polecamy ciekawe strony

28 Warto przeczytać Książki: Matila C. Ghyka, „Złota liczba” Matila C. Ghyka, „Złota liczba” J. Conway, R. Guy, „Księga liczb” J. Conway, R. Guy, „Księga liczb” I. Stewart, „Liczby natury” I. Stewart, „Liczby natury” N. Langdon, Ch. Snape, „Ścieżki matematyki” N. Langdon, Ch. Snape, „Ścieżki matematyki” Artykuły w czasopismach Magazyn Miłośników Matematyki – kwiecień 2006 Magazyn Miłośników Matematyki – kwiecień 2006 Rusz głową – numery 3, 4, 19 Rusz głową – numery 3, 4, 19

29 Koniec Dziękujemy za uwagę


Pobierz ppt "Podpatruj ą c natur ę w poszukiwaniu z ł otej liczby."

Podobne prezentacje


Reklamy Google