Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.

Slides:



Advertisements
Podobne prezentacje
Sterowanie – metody alokacji biegunów II
Advertisements

Metody badania stabilności Lapunowa
Obserwowalność System ciągły System dyskretny
Systemy stacjonarne i niestacjonarne (Time-invariant and Time-varing systems) Mówimy, że system jest stacjonarny, jeżeli dowolne przesunięcie czasu  dla.
Sieć jednokierunkowa wielowarstwowa
Systemy/modele rozmyte – podstawy i struktury
Modele hydrauliki elementów SW
Modele systemu wodociągowego ciśnieniowego
Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model.
Czy potrafimy obliczyć wartość wyjścia sieci znając wartości jej wejść? Tak, przy założeniu, że znamy aktualne wartości wag i progów dla poszczególnych.
Etapy modelowania matematycznego
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Komputerowe wspomaganie decyzji 2010/2011Wprowadzenie – mapa pojęć Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1 Określenie.
Sterowalność i obserwowalność
Model Takagi – Sugeno – Kang’a - TSK
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły;
Nieliniowa metoda najmniejszych kwadratów
Problem transportowy. Transport towarów od dostawców (producentów) do odbiorców odbywa się dwustopniowo przez magazyny hurtowe z przeładunkiem na mniejsze.
Systemy dynamiczne 2010/2011Systemy i sygnały - klasyfikacje Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Dlaczego taki.
Liniowe modele decyzyjne – rozwiązania i analiza post-optymalizacyjna
Modelowanie matematyczne
Opis matematyczny elementów i układów liniowych
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Dwie podstawowe klasy systemów, jakie interesują nas
Systemy dynamiczne – przykłady modeli fenomenologicznych
Sterowalność i obserwowalność
Teoria sterowania 2012/2013Sterowanie – użycie obserwatorów pełnych II Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Sterowanie.
Metody Lapunowa badania stabilności
Systemy/modele rozmyte – podstawy i struktury
Obserwatory zredukowane
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Modelowanie – Analiza – Synteza
Modelowanie – Analiza – Synteza
Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.
Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Cechy modeli obiektów dynamicznych z przedstawionych przykładów:
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
Wybrane modele rozmyte i schematy wnioskowania
Modelowanie i podstawy identyfikacji 2012/2013Schematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii.
Wykład 21 Regulacja dyskretna. Modele dyskretne obiektów.
Podstawy modelowania i identyfikacji 2011/2012Modele fenomenologiczne - metodyka Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Systemy/modele rozmyte – podstawy i struktury
Etapy modelowania matematycznego
Teoria sterowania 2012/2013Sterowalność - osiągalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność - osiągalność
Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych
Sterowanie – metody alokacji biegunów
Wykład 9 Regulacja dyskretna (cyfrowa i impulsowa)
Sterowalność - osiągalność
Sterowanie – metody alokacji biegunów II
Modelowanie – Analiza – Synteza
Sterowanie – metody alokacji biegunów III
Modele dyskretne – dyskretna aproksymacja modeli ciągłych lub
Przykład 1: obiekt - czwórnik RC
Systemy dynamiczne 2014/2015Odpowiedzi – systemy liniowe stacjonarne  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System.
Systemy liniowe stacjonarne – modele różniczkowe i różnicowe
Dwie podstawowe klasy systemów, jakie interesują nas
Teoria sterowania SNUpraszczanie schematów blokowych transmitancyjnych – znajdowanie transmitancji zastępczej  Kazimierz Duzinkiewicz, dr hab. inż.Katedra.
Metody Sztucznej Inteligencji – technologie rozmyte i neuronowe Wnioskowanie Mamdani’ego - rozwinięcia  Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii.
Podstawy automatyki I Wykład 3b /2016
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Podstawy automatyki I Wykład /2016
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Zapis prezentacji:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1 Modele dyskretne – dyskretna aproksymacja modeli ciągłych Modele dyskretne – dwa źródła: modelowany system jest z natury dyskretny modelowany system jest z natury ciągły, ale sterowanie tym systemem realizowane jest przez sterownik komputerowy Układ sterowania cyfrowego (przykładowa struktura) Zatrzask i przetwornik A/D Zegar Komputer cyfrowy Przetwornik D/A Ekstrapolator Element wykonawczy Obiekt sterowany Czujnik i przekształtnik próbkowanie – impulsator kwantyzacja - kwantyzator ekstrapolacja – ekstrapolator

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania2 Metody projektowania systemów sterowania: metody projektowania systemów sterowania ciągłego (analogowego) metody projektowania systemów sterowania dyskretnego (cyfrowego) Jeżeli chcemy zastosować w projektowaniu sterowania komputerowego obiektu ciągłego metody sterowania dyskretnego – potrzebna dyskretyzacja modelu obiektu ciągłego, a dokładnie dyskretna aproksymacja tego modelu Jeżeli chcemy zastosować w sterowaniu obiektu ciągłego sterownik dyskretny (cyfrowy) – projekt sterownika: zaprojektować sterownik ciągły dla ciągłego obiektu (modelu) i następnie dyskretyzować zaprojektowany sterownik dyskretyzować ciągły obiekt (model) i zaprojektować sterownik dyskretny dla dyskretnego obiektu Drugie podejście – bardziej popularne

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania3 Połączenie: system czasu ciągłego do systemu czasu dyskretnego Istota działania przetwornika analogowo – cyfrowego (A/C) Przetwornik A/C Sygnał czasu ciągłego Impulsator Sygnał czasu dyskretnego - sygnał próbkowany - sygnał próbkowany i kwantowany

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania4 Połączenie: system czasu dyskretnego do systemu czasu ciągłego Przetwornik C/A Ekstrapolator zerowego rzędu Sygnał czasu dyskretnego Sygnał czasu ciągłego (kwantowany) Istota działania przetwornika cyfrowo – analogowego (A/C)

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania5 I. Dyskretyzacja z rozwiązania/z całkowania (systemu ciągłego) Weźmy model stanu Rozwiązanie równania stanu Rozwiązanie: Składowa swobodna (odpowiedź zerowego wejścia) Składowa wymuszona (odpowiedź zerowego warunku początkowego)

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania6 Zdefiniujemy – eksponent macierzy kwadratowej Składowa swobodna – rozwiązanie równania jednorodnego Rozwiązanie równania jednorodnego ma postać (pokażemy na SD): Składowa wymuszona – rozwiązanie równania niejednorodnego - przy zerowym warunku początkowym Rozwiązanie równania niejednorodnego ma postać (pokażemy na SD):

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania7 Weźmy równanie wyjścia: Wyjście policzymy podstawiając uzyskany wynik rozwiązania równania stanu Podsumowanie:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania8 Dyskretyzacja z rozwiązania (bez utraty ogólności wyniku dla t 0 = 0) Odpowiedź stanu systemu ciągłego lub Dla dwóch kolejnych chwil próbkowania Przemnażając przez wyrażenie na

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania9 Odejmując wynik od wyrażenia na :

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania10 Przyjmując, że u(t) jest stałe pomiędzy chwilami próbkowania Zmieniając zmienną całkowania Stałe (wartość, dla danego systemu, różna dla różnych T s ) Definiujemy macierze

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania11 Możemy napisać równanie stanu lub w postaci uproszczonej Równanie wyjścia, jako równanie algebraiczne nie zmienia się ; zatem równanie wyjścia przy czym

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania12 Podsumowanie Mając model systemu ciągłego: Model systemu równoważnego dyskretnego: przy czym:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania13 II sposób – aproksymacja pochodnych w równaniu różniczkowym ilorazami różnicowymi Aproksymacja prawostronna: Weźmy ponownie model stanu przy czym

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania14 Stąd dla równania stanu Stałe (wartość, dla danego systemu, różna dla różnych T s ) Definiujemy macierze

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania15 Możemy napisać równanie stanu lub w postaci uproszczonej Równanie wyjścia, jako równanie algebraiczne nie zmienia się ; zatem równanie wyjścia przy czym

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania16 Podsumowanie Mając model systemu ciągłego: Model systemu równoważnego dyskretnego: przy czym:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania17 Weźmy model wejście wyjście

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania18 II sposób – aproksymacja pochodnych w równaniu różniczkowym ilorazami różnicowymi Aproksymacja lewostronna: Stosowane podejścia do aproksymacji

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania19

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania20 Aproksymacja prawostronna: Aproksymacja symetryczna:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania21 Przykład 6 Dyskretyzacja modelu z przykładu 2 m1m1 m2m2 k1k1 k 12 B 12 B1B1 B2B2 x1x1 x2x2 f(t) Model wejście - wyjście Warunki początkowe:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania22 Równania stanu Warunki początkowe:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania23 Model wejście - wyjście Aproksymacja ilorazem lewostronnym I równanie:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania24 II równanie:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania25 Warunki początkowe:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania26 Po uporządkowaniu: I równanie: II równanie: podobnie …… Warunki początkowe: II równanie: podobnie ……

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania27 Model stanu Aproksymacja modelem różnicowym Zastosowanie aproksymacji prawostronnej I równanie stanu: Po uporządkowaniu:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania28 II równanie stanu: Po uporządkowaniu: III równanie stanu: Po uporządkowaniu:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania29 IV równanie stanu: Po uporządkowaniu:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania30 Równanie wyjścia: Aproksymacja:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania31 Możemy też zapisać

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania32 Oznaczając: Możemy zapisać

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania33 Systemy liniowe stacjonarne – modele różniczkowe i różnicowe (jednowymiarowe) Modele wejście - wyjście: system ciągły – równania różniczkowe zwyczajne liniowe o stałych współczynnikach n- tego rzędu system dyskretny – równania różnicowe n-tego rzędu liniowe o stałych współczynnikach System ciągły; model wejście - wyjście: System dyskretny; model wejście - wyjście:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania34 Modele stanu: system ciągły – n równań różniczkowych zwyczajnych liniowych o stałych współczynnikach 1 -ego rzędu – równanie stanu, i q równań algebraicznych – równanie wyjścia system dyskretny – n równań różnicowych 1-ego rzędu liniowych o stałych współczynnikach - równanie stanu, i q równań algebraicznych – równanie wyjścia System ciągły; model stanu System dyskretny; model stanu:

Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania35 Dziękuję – koniec materiału prezentowanego podczas wykładu