Przygotowały: Jagoda Pacocha Dominika Ściernicka

Slides:



Advertisements
Podobne prezentacje
Figury płaskie-czworokąty
Advertisements

1 4 MATEMATYCZNE MIASTO 2 3.
W królestwie czworokątów
W KRAINIE CZWOROKĄTÓW OPRACOWAŁA JULIA PISKORZ KLASA Va
W Krainie Czworokątów.
Maria Pera Bożena Hołownia Agnieszka Skibińska
Okręgiem o środku O i promieniu r nazywamy zbiór punktów płaszczyzny, których odległości od punktu O są równe r r - promień okręgu. r O O - środek.
CZWOROKĄTY Patryk Madej Ia Rad Bahar Ia.
FIGURY GEOMETRYCZNE I ZASTOSOWANIE ICH W ARCHITEKTURZE
FIGURY I BRYŁY W ARCHITEKTURZE MIASTA LEGIONOWO
Czworokąty Wykonał: Tomek J. kl. 6a.
MATEMATYKA KRÓLOWA NAUK
Przedstawiam wzory na obliczanie
MATEMATYKA.
Pola Figur Płaskich.
Figury geometryczne Opracowała: mgr Maria Różańska.
WIELOKĄTY PRZYKŁADY WIELOKĄTÓW TRÓJKĄTY CZWOROKĄTY WIELOKĄTY FOREMNE.
KWADRAT PROSTOKĄT RÓWNOLEGŁOBOK ROMB TRAPEZ CZWOROKĄTY.
Klasyfikacja Czworokątów
Figury w otaczającym nas świecie
Krótki kurs geometrii płaszczyzny
GEOMETRIA PROJEKT WYKONALI: Wojciech Szmyd Tomasz Mucha.
,, W KRAINIE CZWOROKĄTÓW ,, Adam Filipowicz VA SPIS TREŚCI
Autor: Marek Pacyna Klasa VI „c”
Własności czworokątów
Figury płaskie I PRZESTRZENNE Wykonała: Klaudia Marszał
Trójkąty.
FIGURY GEOMETRYCZNE.
PRZYPOMNIENIE WIADOMOŚCI DOTYCZĄCYCH CZWOROKĄTÓW
Przygotowała Patrycja Strzałka.
autor: Mirosława Krzyżanowska
Wielokąty Wybierz czworokąt.
Opracowała: Iwona Kowalik
RODZAJE CZWOROKĄTÓW.
Prezentacja figury geometryczne otaczające nas na świecie
Przygotował Maciej Wiedeński Zapraszam!!!
Czworokąty.
Własności wielokątów.
Kwadrat i Prostokąt.
Opracowała: Julia Głuszek kl. VI b
Przygotowała Zosia Orlik
Deltoid.
WITAMY W ŚWIECIE MATEMATYKI
Klasyfikacja czworokątów
Własności Figur Płaskich
WŁASNOŚCI FIGUR GEOMETRYCZNYCH
Własności figur płaskich
Pola i obwody figur płaskich.
CZWOROKĄTY Autor: Anna Mikuć START.
Kwadrat -Wszystkie boki są jednakowej długości,
Czworokąty Czworokąty 1.
WIELOKĄTY Karolina Zielińska kl.v Aleksandra Michałek kl v
POLA FIGUR I RESZTA.
Co to jest wysokość?.
Powtórzenie do klasówki trójkąty i czworokąty
Matematyka to tak prosty, a zarazem przyjemny przedmiot, że aż miło się go uczyć! Szczególnie przyjemnym działem matematyki są figury – z czym się wiąże.
Definicje Fot: sxc.hu, wyszukano r.
FIGURY PŁASKIE.
Figury płaskie.
Wielokąty wpisane w okrąg
Figury geometryczne.
Figury geometryczne płaskie
Czworokąty i ich własności
CZWOROKĄTY i ich własności
Czyli geometria nie taka zła
Jakub Szumański Adrian Wernicki
Opracowała: Justyna Tarnowska
Klasyfikacja czworokątów
Pola figur płaskich.
CZWOROKĄTY Autor: Anna Mikuć START.
Zapis prezentacji:

Przygotowały: Jagoda Pacocha Dominika Ściernicka Figury geometryczne Przygotowały: Jagoda Pacocha Dominika Ściernicka

Kwadrat Wielokąt foremny o czterech bokach (czworokąt foremny), czyli czworobok o czterech przystających bokach (a stąd równej długości) i tyluż przystających kątach wewnętrznych (a stąd prostych). Można go również scharakteryzować jako prostokąt o przystających bokach (bądź równej długości), romb o przystających (bądź prostych) kątach wewnętrznych. Dowolne dwa kwadraty są podobne. Kwadraty są ścianami sześcianu oraz niektórych wielościanów półforemnych, m.in. ośmiościanu ściętego.

Prostokąt W planimetrii, czworokąt, który ma wszystkie wewnętrzne kąty proste (stąd również jego nazwa). Prostokąt jest szczególnym przypadkiem trapezu prostokątnego oraz równoległoboku. Szczególnym przypadkiem prostokąta (o wszystkich bokach tej samej długości) jest kwadrat. Prostokąt, który nie jest kwadratem, ma dokładnie dwie osie symetrii i środek symetrii. Przekątne prostokąta są równej długości i przecinają się w połowie. Kąt między przekątnymi jest prosty wtedy i tylko wtedy, gdy prostokąt jest kwadratem.

Trójkąt Wielokąt o trzech bokach. Trójkąt to najmniejsza (w sensie inkluzji) figura wypukła i domknięta, zawierająca pewne trzy ustalone i niewspółliniowe punkty płaszczyzny (otoczka wypukła wspomnianych trzech punktów). Odcinki tworzące łamaną nazywamy bokami trójkąta, punkty wspólne sąsiednich boków nazywamy wierzchołkami trójkąta. Każdy trójkąt jest jednoznacznie wyznaczony przez swoje wierzchołki. Często dla wygody jeden z boków trójkąta nazywa się podstawą, a pozostałe – ramionami.

Trapez Czworokąt mający parę równoległych boków nazywanych podstawami, pozostałe noszą nazwę ramion; odległość między podstawami to wysokość. Niektórzy autorzy[1][2][3] definiują trapez jako czworokąt posiadający tylko jedną parę boków równoległych, tzn. uważają, że równoległobok nie jest trapezem. Suma miar kątów leżących przy tym samym ramieniu dowolnego trapezu jest równa 180°.

Romb W geometrii czworokąt (wypukły) o bokach równej długości; każdy romb jestrównoległobokiem, zaś szczególnym jego przypadkiem (o wszystkich kątach prostych) jest kwadrat. Jeżeli a oznacza długość boku rombu, a h jego wysokość (tzn. odległość między dwoma równoległymi bokami), zaś d,f to długości odpowiednio krótszej i dłuższej przekątnej rombu.

Równoległobok Równoległobok jest szczególnym przypadkiem trapezu. Jego przeciwległe boki są nie tylko równoległe, ale też równej długości. Jego przekątne przecinają się w połowie swojej długości (nie zawsze pod kątem prostym). Przeciwległe kąty są równej miary. Suma miar kątów sąsiednich wynosi 180° (kąt półpełny). Szczególnymi przypadkami równoległoboku są romb (o wszystkich bokach takiej samej długości) oraz prostokąt (o wszystkich kątach prostych), a także kwadrat (o wszystkich bokach takiej samej długości i kątach prostych).

Trapezoid Trapezoid jest definiowany jako czworokąt, w którym żadna para boków nie jest równoległa, czyli czworokąt, który nie jest trapezem. Niektórzy żądają dodatkowo, żeby trapezoid był czworokątem wypukłym

Deltoid czworokąt, którego jedna z przekątnych leży na jego osi symetrii. Jest ona wówczas symetralną drugiej przekątnej. W takim czworokącie pewne dwa sąsiednie boki mają równą długość a, a pozostałe dwa boki mają także równą długość b. Niektórzy autorzy żądają też, aby deltoid był wypukły. Według niektórych, np. Jana Zydlera deltoid dodatkowo nie może mieć wszystkich boków równych. Większość źródeł nie tworzy jednak takich wyjątków i uważa romb za szczególny przypadek deltoidu

Wielokokąt monotoniczny W geometrii wielokąt, dla którego można wskazać prostą L (tzw. kierunek monotoniczności), taką że każda prosta prostopadła do niej przecina wielokąt w najwyżej dwóch punktach (silna monotoniczność), można również rozszerzyć tę definicję na wielokąty posiadające krawędzie prostopadłe do L (słaba monotoniczność).

Koło Zbiór wszystkich punktów płaszczyzny, których odległość od ustalonego punktu na tej płaszczyźnie (środka koła) nie przekracza pewnej wartości (promienia koła). Równoważna definicja: część płaszczyzny ograniczona przez pewien okrąg; okrąg ten zawiera się w kole i jest zarazem jego brzegiem.

Koniec! Dziękujemy za uwagę!