Budowa i funkcje mięśni, procesy zachodzące w mięśniach podczas pracy

Slides:



Advertisements
Podobne prezentacje
Opracowała Magdalena Osiadło
Advertisements

Czyli jak działają nasze mięśnie w stanie nieważkości
Mięsień sercowy Poprzecznie prążkowany
Krwioobieg Duży i Mały Michał Ziemba i Jakub Michalik Kl I a.
Układ krwionośny (Układ krążenia).
Mięśnie   Wyróżnia się trzy typy tkanki mięśniowej: Mięśnie szkieletowe
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
  OK konspekt z biologii.
Krew Funkcje i skład.
Funkcjonowanie układu oddechowego w procesie pracy
Funkcje krwi w organizmie. Budowa i czynności układu krążenia
Kardiotokografia.
NARZĄDY WEWNĘTRZNE OWADÓW Michał Pałyga
UKŁAD RUCHU.
Układy motoryczne.
Tkanki zwierzęce.
Leki antyarytmiczne.
Fotosynteza Fotosynteza to złożony proces biochemiczny zachodzący głównie w liściach, a dokładniej w chloroplastach. Przeprowadzany jest jedynie przez.
W naszym ciele mamy 215 par mięśni szkieletowych
Tkanka mięśniowa (textus muscularis) składa się głównie z wydłużonych komórek, które stanowią miąższ narządu jakim jest mięsień. Komórki mięśniowe otoczone.
UKŁAD KRWIONOŚNY.
Przystosowanie ptaków
Układ oddechowy Budowa i funkcje Autor: Patryk Lompart.
Komórki i tkanki w organizmie człowieka
UKŁAD MIĘŚNIOWY CZŁOWIEKA
1. Wysiłek a układ krążenia
PODSTAWOWE WIADOMOŚCI O CZŁOWIEKU
Materiał edukacyjny wytworzony w ramach projektu „Scholaris - portal wiedzy dla nauczycieli” współfinansowanego przez Unię Europejską w ramach Europejskiego.
Wiadomości ogólne o komórkach i tkankach
TKANKI Tkanka-zespół komórek o podobnej funkcji wraz z wytworzoną przez nie substancją międzykomórkową.
Zasadnicza Szkoła Zawodowa w Czarnym Dunajcu PROFILAKTYKA CHORÓB KRĘGOSŁUPA mgr Roman Giełczyńśki.
Jak oddychamy?.
UKŁAD KRWIONOŚNY.
KOMÓRKA – podstawowa jednostka budulcowa i czynnościowa organizmu
Układ nerwowy CZŁOWIEKA.
Biologia.
UKŁAD MIĘŚNIOWY.
Ruch w życiu młodego człowieka
CECHY MOTORYCZNE.
Układ ruchu Układ ruchu.
Budowa i funkcje mózgu Złudzenia optyczne
Kierunki przemian metabolicznych
Metabolizm i produkty przemiany materii
Fizjologiczne podstawy rekreacji ruchowej
Elementy Anatomii i Fizjologii
MIĘŚNIE SZKIELETOWE CZŁOWIEKA
Reakcje organizmu na wysiłek fizyczny
Przyswajanie wiedzy Przeciętnie człowiek zapamiętuje: 10% tego co czyta 20% tego co słyszy 30% tego co widzi 70% tego co słyszy i widzi 80% tego co mówi.
Układ ruchu=) Szkielet!!.
Autorzy: Klaudia Cisek Angelika krukar
Materiał edukacyjny wytworzony w ramach projektu „Scholaris - portal wiedzy dla nauczycieli” współfinansowanego przez Unię Europejską w ramach Europejskiego.
Otyłość.
Układ rozrodczy męski i żeński
2.36. Budowa i funkcje układu oddechowego
Natural Sciences, Natural English. Mitochondrium.
ALKOHOLIZM
APARAT RUCHU.
Zależność między mechanizmami obronnymi a regresją w różnych chorobach (model C.B.Bahnsona) Bahnson: instynkty, potrzeby, napięcia.
ATP oraz budowa i fizjologia serca
Budowa i funkcjonowanie męskich narządów rozrodczych
UKŁAD POKARMOWY CZŁOWIEKA
MIĘŚNIE SZKIELETOWE CZŁOWIEKA
 nerw odchodzący od rdzenia kręgowego, opuszcza go przez otwory międzykręgowe, które są utworzone przez wcięcie kręgowe dolne i górne.
DLACZEGO RUCH JEST TAK WAŻNY DLA NASZEGO ZDROWIA ?
Materiał edukacyjny wytworzony w ramach projektu „Scholaris - portal wiedzy dla nauczycieli” współfinansowanego przez Unię Europejską w ramach Europejskiego.
MNIEJ STRESU, WIĘCEJ ENERGII!
Dlaczego palenie jest szkodliwe?
Zależność między mechanizmami obronnymi a regresją w różnych chorobach (model C.B.Bahnsona) Bahnson: instynkty, potrzeby, napięcia.
Zapis prezentacji:

Budowa i funkcje mięśni, procesy zachodzące w mięśniach podczas pracy

U człowieka występują trzy rodzaje mięśni – poprzecznie prążkowane (szkieletowe), gładkie (tworzące mięśniówkę wielu przewodów np. pokarmowego, moczowego) oraz mięsień sercowy.

Mięśnie poprzecznie prążkowane

Nazwa ich wzięła się z obrazu tych mięśni w mikroskopie świetlnym: są w nim widoczne wyraźne ciemne i jasne prążki. Prążkowanie jest wynikiem regularnego, naprzemiennego ułożenia włókienek (filamentów) białkowych: cienkich, zbudowanych z aktyny oraz grubych, składających się z miozyny. Oba rodzaje włókienek układają się w pęczki i tworzą miofibryle. Podczas skurczu włókienka aktynowe wślizgują się między włókienka miozynowe, dzięki czemu mięsień się skraca, kurczy.

Wśród mięśni poprzecznie prążkowanych wyróżnia się mięśnie szkieletowe zbudowane z włókien mięśniowych, osiągających długość nawet kilkudziesięciu centymetrów. Włókna mięśniowe różnicują się w okresie rozwoju zarodkowego.

Częścią kurczliwą mięśnia jest brzusiec, zwany również głową mięśnia Częścią kurczliwą mięśnia jest brzusiec, zwany również głową mięśnia. Zazwyczaj na obu końcach mięśnia znajdują się ścięgna łączące go ze szkieletem. Są one zbudowane głównie z pęczków włókien kolagenowych, między którymi występują komórki tkanki łącznej- fibrocyty.

Większość mięśni jest przyczepiona do kości i odgrywa zasadniczą rolę w ruchach różnych części ciała. Zginanie i prostowanie kończyn, ruchy klatki piersiowej, poruszanie językiem czy zamykanie i otwieranie powiek zawdzięczamy właśnie pracy mięśni szkieletowych. Również uśmiech jest efektem pracy mięśni szkieletowych twarzy.

W zależności od liczby występujących brzuśców wyróżnia się mięsnie dwugłowe, trójgłowe i czterogłowe, Towarzyszy im określona liczba ścięgien, łączących się ze szkieletem. W mięśniu dwugłowym na jednym końcu znajduje się jedno ścięgno, a na drugim dwa. W mięśniu trój- czy czworogłowym na jednym biegunie występują odpowiednio 3 lub 4 ścięgna. Tylko nieliczne mięsnie np. okrężny ust, okrężny oka, nie mają ścięgien i nie łączą się ze szkieletem.

Mięsień dwugłowy Mięsień trójgłowy

Mięśnie szkieletowe różnią się między sobą wielkością i kształtem, co jest związane z pełnionymi przez nie funkcjami. Ze względu na kształt wyróżniamy m. in. : → mięśnie długie - m.in. obsługujące kończyny np. mięsień czworogłowy uda i mięsień dwugłowy ramienia → mięśnie krótkie – np. obsługujące kręgosłup → mięśnie szerokie – np. najszerszy grzbietu i przepony → mięśnie okrężne – np. okrężne oka

Mięśnie szkieletowe mogą się tylko kurczyć, dlatego wykonanie dowolnego ruchu jest możliwe dzięki występowaniu grup mięśni antagonistycznych. Zginając rękę w łokciu, a następnie prostując ją, używamy dwóch różnych zespołów mięśni – zginaczy i prostowników. Podczas zginania przedramienia można wyczuć, jak napręża się zginacz – mięsień dwugłowy, a jednocześnie rozciąga się prostownik – mięsień trójgłowy. Kiedy prostujemy przedramię, mięsień trójgłowy kurczy się a rozciąga mięsień dwugłowy. Zatem ruch spowodowany przez określony mięsień lub grupę mięśni może być zawsze odwrócony.

Pod względem topograficznym wszystkie mięśnie poprzecznie prążkowane szkieletowe dzielimy na mięśnie głowy, szyi, tułowia, kończyny górnej oraz dolnej. Natomiast w podziale czynnościowym uwzględnia się mięśnie wykonujące wspólne czynności, np. mięśnie oddechowe i mięśnie utrzymujące postawę. Mięśnie szkieletowe zależą od woli człowieka, szybko się kurczą ale tez szybko męczą.

Mięsień sercowy jest zbudowany z komórek mięśniowych zawierających tylko jedno jądro komórkowe. Komórki te, podobnie jak włókna mięśni szkieletowych, są wypełnione ciasno upakowanymi miofibrylami. Każda miofibryle składa się z regularnie ułożonych cienkich i grubych włókienek, co sprawia, że komórki mięśnia sercowego również wykazują poprzeczne prążkowanie. Mięsień sercowy kurczy się niezależnie od naszej woli i nigdy się nie męczy, co nie oznacza jednak, że nie trzeba o niego należycie dbać

Ponadto mięsień sercowy cechuje się automatyzmem: serce wyjęte z ustroju i umieszczone w płynie fizjologicznym (0.9%NaCl), wykonuje regularne skurcze (można to zauważyć podczas przewożenia serc do przeszczepów). Automatyzm zapewniają komórki układu bodźco przewodzącego serca znajdujące się w : węźle zatokowo-przedsionkowym, przedsionkowo-komorowym, pęczku Hissa i włóknach Purkinjego.

Mięsień sercowy - przekrój

Mięśnie gładkie- zbudowane z wydłużonych komórek mięśniowych – wchodzą w skład ścian wielu narządów wewnętrznych np. przewodu pokarmowego, dróg oddechowych, moczowodów i pęcherza moczowego, nasieniowodów, jajowodów i macicy oraz naczyń krwionośnych. W narządach tych mięśnie gładkie układają się w warstwy, tworząc warstwę mięśniową określaną również jako mięśniówka.

Główną funkcją tych mięśni jest wytwarzanie ciśnienia w otaczanej przez nie przestrzeni. Na przykład mięśnie przewodu pokarmowego, wywierając naciska na jego zawartość, przesuwają pokarm w przełyku i jelicie lub mieszają go w żołądku. Zwężając naczynia krwionośne, mięśnie gładkie wpływają na ciśnienie przepływającej krwi.

Tchawica – mięśnie gładkie

Włókna mięśni gładkich w ścianie oskrzeli Mięśnie gładkie macicy umożliwiają poród, a skurcze mięśni gładkich i pęcherza moczowego powodują tłoczenie moczu do cewki moczowej. Mięśnie gładkie kurczą się wolno, nie meczą się i – podobnie jak mięsień sercowy – pracują niezależnie od naszej woli. Włókna mięśni gładkich w ścianie oskrzeli

Mięśnie ze względu na zakres wykonywanych ruchów możemy podzielić na: Zginacze - prostowniki Przywodziciele - odwodziciela

Pobudzenie mięśni następuje za pośrednictwem nerwów ruchowych, które przekazują impulsy nerwowe z ośrodkowego układu nerwowego. Komórka mięśniowa wraz z włóknami oraz zaopatrywanymi przez nie włóknami mięśniowymi tworzy jednostkę ruchową zwaną jednostką motoryczną. Ilość zaopatrywanych włókien mięśniowych przez jednostkę motoryczną zależy od funkcji mięśnia.

Mięśnie, które pełnią funkcje długotrwałe, ale mało precyzyjne posiadają małą ilość neuronów ruchowych są to np. mięśnie grzbietu. Mięśnie pełniące czynności precyzyjne i kurczące się szybko mają więcej neuronów ruchowych są to np. mięśnie palców, oka. Zakończenie nerwów ruchowych nazywa się płytką ruchową i to właśnie w tej płytce wytwarzany jest mediator chemiczny - acetylocholina, która pobudza włókna mięśniowe do skurczu. Aby wykazać zmiany w pracy mięśnia używa się specjalnego urządzenia zwanego miogramem.

Dzięki miogramowi można wyróżnić dwa rodzaje skurczów: Dzięki miogramowi można wyróżnić dwa rodzaje skurczów: * Izotoniczny - dochodzi do zmiany długości mięśnia przy niezmienionym napięciu * Izometryczny - dochodzi do zmiany napięcia ale długość pozostaje bez zmian Skurcz mięśnia występuje nie w momencie jego podrażnienia, ale nieco później. Czas, który upływa od momentu zadziałania bodźca aż do wystąpienia skurczu nazywa się okresem utajonym skurczu i wynosi około 0,001s.

W czasie skurczu mięśni dochodzi do zużycia tlenu i wydzielania dwutlenku węgla, co wskazuje na zachodzące procesy utleniania. Procesy biochemiczne zachodzące w czasie skurczu mięśnia prowadzą do przemiany związków wysokoenergetycznych - fosfokreatyny, ATP i glikogenu. Porównując ilość związków chemicznych znajdujących się w mięśniu w stanie spoczynku a w mięśniu po wykonanym skurczu to zmniejsza się ilość fosfokreatyny, ATP oraz glikogenu a zwiększa się natomiast ilość fosforu nieorganicznego, kreatyny, ADP, AMP oraz kwasu mlekowego.

W pierwszej fazie skurczu, która przebiega bez udziału tlenu, glikogen zaś zostaje rozłożony do kwasu mlekowego. W szeregu reakcji zachodzi ciągła przemiana kwasu fosforowego a uwolniona w czasie tego procesu energia zostaje wykorzystana do syntezy fosforanów organicznych. W drugiej fazie zwanej tlenową następuje utlenianie wytworzonego kwasu mlekowego do dwutlenku węgla i wody oraz budowanie glikogenu. Ta reakcja wymaga odpowiedniej ilości energii, która zostaje wytworzona w procesie utleniania kwasu mlekowego do dwutlenku węgla i wody a następnie zostaje zmagazynowana w ATP.

Przy dużym wysiłku w stanie niedotlenienia dochodzi do zmęczenia mięśni. Polega on na niemożliwości wykonania skurczu elementów kurczliwych i zmian procesów metabolicznych. Powoduje to nagromadzenie się w mięśniach produktów metabolizmu: kwasu fosforowego, kwasu mlekowego, które zmniejszają kurczliwość włókien. Aby utlenić kwas mlekowy i odnowić zapas kwasu fosfokreatynowego konieczne jest doprowadzenie tlenu. Niedobór tlenu w czasie wysiłku określany jest jako dług tlenowy. Dług ten jest wyrównany dopiero po wysiłku, gdy dochodzi do większej wentylacji płuc i zwiększonego zapotrzebowania na tlen.

Bibliografia dr Enric Gil, „Atlas Anatomii”, Warszawa 1991, wyd. Wiedza i życie Spalika K., „ Biologia cz. 3”, Warszawa 2004, wyd. WSiP P. Whitfield, „ Ciało czlowieka”, Warszawa 1997, wyd. Świat książki

Dziękujemy za uwagę Paulina Borowczyk 33834 Anna Golonka 34788