U(0)=0 proste równanie traktowane jawnym schematem Eulera.

Slides:



Advertisements
Podobne prezentacje
Problem opisany RRZ jest sztywny gdy: jest charakteryzowany różnymi skalami czasowymi. 2.Stabilność bezwzględna nakłada silniejsze ograniczenia na.
Advertisements

Problem opisany RRZ jest sztywny gdy: jest charakteryzowany różnymi skalami czasowymi. 2.Stabilność bezwzględna nakłada silniejsze ograniczenia na.
Szacowanie błędu lokalnego w metodach jednokrokowych
U(0)=0 proste równanie traktowane jawnym schematem Eulera.
1 TREŚĆ UMOWY O PRACĘ : Umowa o pracę określa strony umowy, rodzaj umowy, datę jej zawarcia oraz warunki pracy i płacy, w szczególności: 1) rodzaj pracy,
Blok I: PODSTAWY TECHNIKI Lekcja 7: Charakterystyka pojęć: energia, praca, moc, sprawność, wydajność maszyn (1 godz.) 1. Energia mechaniczna 2. Praca 3.
Równowaga chemiczna - odwracalność reakcji chemicznych
Plan Czym się zajmiemy: 1.Bilans przepływów międzygałęziowych 2.Model Leontiefa.
Zajęcia 1-3 Układ okresowy pierwiastków. Co to i po co? Pojęcie masy atomowej, masy cząsteczkowej, masy molowej Proste obliczenia stechiometryczne. Wydajność.
Stężenia Określają wzajemne ilości substancji wymieszanych ze sobą. Gdy substancje tworzą jednolite fazy to nazywa się je roztworami (np. roztwór cukru.
OPERATORZY LOGISTYCZNI 3 PL I 4PL NA TLE RYNKU TSL Prof. zw.dr hab. Włodzimierz Rydzkowski Uniwersytet Gdańsk, Katedra Polityki Transportowej.
Rozliczanie kosztów działalności pomocniczej
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Metody optymalizacji - Energetyka 2015/2016 Metody programowania liniowego.
© Matematyczne modelowanie procesów biotechnologicznych - laboratorium, Studium Magisterskie Wydział Chemiczny Politechniki Wrocławskiej, Kierunek Biotechnologia,
Niepewności pomiarowe. Pomiary fizyczne. Pomiar fizyczny polega na porównywaniu wielkości mierzonej z przyjętym wzorcem, czyli jednostką. Rodzaje pomiarów.
Ćwiczenia Zarządzanie Ryzykiem Renata Karkowska, ćwiczenia „Zarządzanie ryzykiem” 1.
Cel analizy statystycznej. „Człowiek –najlepsza inwestycja”
Ryzyko a stopa zwrotu. Standardowe narzędzia inwestowania Analiza fundamentalna – ocena kondycji i perspektyw rozwoju podmiotu emitującego papiery wartościowe.
Zmienne losowe Zmienne losowe oznacza się dużymi literami alfabetu łacińskiego, na przykład X, Y, Z. Natomiast wartości jakie one przyjmują odpowiednio.
MOTYWACJA. Słowo motywacja składa się z dwóch części: Motyw i Akcja. Aby podjąć działanie (akcję), trzeba mieć do tego odpowiednie motywy. Łaciński źródłosłów.
Analiza numeryczna i symulacja systemów Równania różniczkowe zwyczajne cz.3: Zagadnienie brzegowe (BVP) Janusz Miller.
ENERGIA to podstawowa wielkość fizyczna, opisująca zdolność danego ciała do wykonania jakiejś pracy, ruchu.fizyczna Energię w równaniach fizycznych zapisuje.
Analiza tendencji centralnej „Człowiek – najlepsza inwestycja”
Równowaga rynkowa w doskonałej konkurencji w krótkim okresie czasu Równowaga rynkowa to jest stan, kiedy przy danej cenie podaż jest równa popytowi. p.
Funkcja liniowa Przygotował: Kajetan Leszczyński Niepubliczne Gimnazjum Przy Młodzieżowym Ośrodku Wychowawczym Księży Orionistów W Warszawie Ul. Barska.
© Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH Prezentacja – 4 Matematyczne opracowywanie.
W KRAINIE TRAPEZÓW. W "Szkole Myślenia" stawiamy na umiejętność rozumowania, zadawania pytań badawczych, rozwiązywania problemów oraz wykorzystania wiedzy.
/ /61/3 1/6 Tabela Butchera dla klasycznej jawnej RK4.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI ZAKŁAD METROLOGII I SYSTEMÓW POMIAROWYCH METROLOGIA Andrzej Rylski.
Własności elektryczne materii
Optymalna wielkość produkcji przedsiębiorstwa działającego w doskonałej konkurencji (analiza krótkookresowa) Przypomnijmy założenia modelu doskonałej.
Metody sztucznej inteligencji - Technologie rozmyte i neuronowe 2015/2016 Perceptrony proste nieliniowe i wielowarstwowe © Kazimierz Duzinkiewicz, dr hab.
Renata Maciaszczyk Kamila Kutarba. Teoria gier a ekonomia: problem duopolu  Dupol- stan w którym dwaj producenci kontrolują łącznie cały rynek jakiegoś.
Analiza numeryczna i symulacja systemów 2. Równania różniczkowe zwyczajne - cz.2 - metody Rungego-Kutty Janusz Miller.
Budżetowanie kapitałowe cz. III. NIEPEWNOŚĆ senesu lago NIEPEWNOŚĆ NIEMIERZALNA senesu strice RYZYKO (niepewność mierzalna)
Modulatory częstotliwości
 Austriacki fizyk teoretyk,  jeden z twórców mechaniki kwantowej,  laureat nagrody Nobla ("odkrycie nowych, płodnych aspektów teorii atomów i ich zastosowanie"),
Test analizy wariancji dla wielu średnich – klasyfikacja pojedyncza
Teoria sterowania Materiał wykładowy /2017
Minimalizacja automatu
Schematy blokowe.
Wyznaczanie miejsc zerowych funkcji
DEFINICJA I ZASTOSOWANIE W JĘZYKU HASKELL
MECHANIKA 2 Dynamika układu punktów materialnych Wykład Nr 9
Metody matematyczne w Inżynierii Chemicznej
On-the-Fly Garbage Collection
FIZYKA na służbie b’Rowersa ...krótki kurs.
RUCH KULISTY I RUCH OGÓLNY BRYŁY
FIZYKA na służbie b’Rowersa ...krótki kurs.
MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH
Liczby pierwsze.
Podstawy automatyki I Wykład /2016
Elementy analizy matematycznej
KOREKTOR RÓWNOLEGŁY DLA UKŁADÓW Z NIEMINIMALNOFAZOWYMI OBIEKTAMI Ryszard Gessing Instytut Automatyki, Politechnika Śląska Plan referatu Wprowadzenie.
Wykład IV Ruch harmoniczny
Zajęcia przygotowujące do matury rozszerzonej z matematyki
Elementy fizyki kwantowej i budowy materii
Równania różniczkowe zwyczajne
Wytrzymałość materiałów
Tensor naprężeń Cauchyego
Problem Plecakowy (Problem złodzieja okradającego sklep)
Modelowanie układów dynamicznych
Implementacja rekurencji w języku Haskell
Znajdowanie liczb pierwszych w zbiorze
Doskonalenie rachunku pamięciowego u uczniów
Wyrównanie sieci swobodnych
Elipsy błędów.
Zapis prezentacji:

u(0)=0 proste równanie traktowane jawnym schematem Eulera

prosty problem nieco skomplikujemy a=10 niech a >> 0 szybkozmienna składowa składowa wolnozmienna

rozwiązanie a=0 krok dt=0.02 jest bardzo drobny w porównaniu ze skalą zmienności składowej parabolicznej

a=100 rozwiązanie dt=0.019 dt=0.02 dt=0.021 dokładne krok dt=0.02 okazuje się zbyt długi gdy włączyć składową szybkozmienną nawet tam, gdy znika ona z rozwiązania

część szybkozmienna gaśnie szybko, ale w schemacie jawnym Eulera rozwiązanie dt=0.019 dt=0.02 dt=0.021 dokładne część szybkozmienna gaśnie szybko, ale w schemacie jawnym Eulera nakłada ograniczenie na krok czasowy : u’=-au a=100  dt<0.02, gdy szybkozmienna składowa zaniknie dt jest bardzo mały w porównaniu do skali zmienności u(t)

w metodzie niejawnej problemu ze stabilnością bezwzględna nie ma ... regiony stabilności metod Eulera Dt Im (l) Dt Im (l) -1 1 1 -2 Dt Re(l) Dt Re(l) -1 -1 metoda Eulera jawna niejawna metoda Eulera w metodzie niejawnej problemu ze stabilnością bezwzględna nie ma ...

rozwiązania są stabilne i dokładne dla dużych t nawet gdy dt duże niejawna metoda Eulera: zastosowanie do problemu sztywnego dokładny dt=0.02 dt=0.04 rozwiązania są stabilne i dokładne dla dużych t nawet gdy dt duże dla małych t można wstawić mniejsze dt, potem krok zwiększyć

Problemy sztywne (drętwe) (stiff, stiffness) Problem jest praktyczny i ścisłej definicji, która byłaby użyteczna, nie ma . Jedna z możliwych: problem jest sztywny, gdy stosując schemat jawny musimy przyjąć krok czasowy bardzo mały w porównaniu ze skalą zmienności funkcji. RRZ jest problemem sztywnym gdy: Problem jest charakteryzowany bardzo różnymi skalami czasowymi Stabilność bzwz nakłada silniejsze ograniczenia na krok czasowy niż dokładność. Metody jawne się nie sprawdzają. szybkozmienna składowa składowa wolnozmienna niech a >> 0

Problemy sztywne (drętwe) (stiff) problem najczęściej spotykany dla układ równań różniczkowych opisujących sprzężone procesy o bardzo różnych skalach czasowych Ogólna postać układu równań pierwszego rzędu wektor Rn fcja RRn R Tylko niekiedy można podać rozwiązanie w zamkniętej formie analitycznej. Można, np. dla jednorodnego problemu liniowego

y1(0)=0 y2(0)=1 wartości własne –l1, –l2 rozłożyć warunek początkowy problemy sztywne gdzie dla niezdegenerowanych wartości własnych cj liczone z warunku początkowego np. problem rozpadu promieniotwórczego Izotop 2 o stałej rozpadu l2 rozpada się promieniotwórczo na inny izotop 1 o stałej rozpadu l1 y1(0)=0 y2(0)=1 wartości własne –l1, –l2 rozłożyć warunek początkowy na wektory własne

gdy duża rozpiętość między minimalną problemy sztywne gdy duża rozpiętość między minimalną a maksymalną wartością własną |lmax/lmin|>>1: wektor własny który odpowiada największej wartości własnej wygaśnie najprędzej, ale (dla metod jawnych) pozostawi najsilniejsze ograniczenie dla kroku czasowego (np. Euler, RK2 dt<2/|lmax|) jesteśmy zmuszeni przyjąć malutki krok w porównaniu z przebiegiem rozwiązania (w przeciwnym wypadku eksplozja) duże różnice skal czasowych

u’’+1001u’+1000u=0 następny przykład: podobny do poprzedniego problem sztywny z liniowego równania drugiego rzędu o bliskich współczynnikach u’’+1001u’+1000u=0 wartości / wektory własne: -1 / [-1,1]T -1000 / [1,-1000]T bardzo różne skale czasowe

problemy sztywne szczególnie dotkliwy przypadek: równanie niejednorodne (bez rozwiązania analitycznego) załóżmy, że wartości własne A są ujemne Rozwiązanie będzie miało postać: stan ustalony wolnozmienny stan przejściowy (wszystkie zgasną) Na czym polega problem? : Rozwiązując problem numerycznie metodą jawną (Euler, RK2) musimy przyjąć krok czasowy Dt < 2/|l_max| aby uniknąć eksplozji rozwiązań nawet gdy wszystkie wyrazy z powyższej sumy w rozwiązaniu znikają

y2 – izotop matka wolno rozpadająca się na y1 y1 – izotop szybko rozpadający się, niejednorodność: dodatkowo pewna ilość jest w stałym tempie doprowadzana z zewnątrz y2(0)=1 y1(0)=0 l1=1/10 l2=1/10 000 bardzo wolno się rozpada [taka i większa rozpiętość lambd typowa również dla reakcji chemicznych spotykana również dla układów elektrycznych] przy zaniedbywalnej wielkości l2 y1=0.5 spełnia pierwsze równanie

automatyczna kontrola kroku czasowego dla jawnego RK2 z krokiem czasowym ustawianym przez ekstrapolację Richardsona l1=1/10 l2=1/10 000 tol=0.001 zęby: zaakceptowane błędy y Dt t t tol=0.00001 w obydwu przypadkach Dt tylko chwilowo przekracza krytyczną wartość 2/(1/10)=20 y t

RK4 2.78 / l1

stały krok, bardzo dłuuugi Zastosujmy metodę A-stabilną = wzór trapezów (p=2) stały Dt=200 Wzór trapezów stały krok, bardzo dłuuugi y nic złego się nie dzieje ze stabilnością w stanie „ustalonym” t

Wzór trapezów i krok automatycznie dobierany przez ekstrapolację Richardsona tol=0.01 kropki -tam gdzie postawiony krok y y t t raptem 10 kroków i załatwione! zamiast 104 kroków RK4 Krok czasowy – zmienność 4 rzędów wielkości.

trapezy (najdokładniejsza metoda A-stabilna spośród wielokrokowych) z tolerancją 0.00001 maksymalnie parę tysięcy Dt y poziom jawnych RK t t metoda trapezów: jako A-stabilna radzi sobie nieźle z doborem kroku czasowego w problemach sztywnych – ale jest stosunkowo mało dokładna dokładniejsza A-stabilna pozwoliłaby stawiać jeszcze dłuższe kroki niestety = dokładniejszej A-stabilnej tej w klasie metod (liniowe wielokrokowe) nie ma dlatego : niejawne metody RK (jednokrokowe, nieliniowe)

trapezy z tolerancją 0.00001 (najdokładniejsza metoda A-stabilna spośród wielokrokowych) Dt y maksymalnie parę tysięcy t t maksymalnie kilkadziesiąt tysięcy Dt y niejawna dwustopniowa metoda RK (rzędu 4) z tolerancją 0.00001 (A-stabilna) t t

porównanie kroków czasowych dla jawnej i niejawnej metody RK rzędu 4 niejawna dwustopniowa metoda RK (rzędu 4) z tolerancją 0.00001 (A-stabilna) Dt t jawna RK4 Dt t

dla dużych t – rozwiązanie ustalone u(t)=cos(t) Mówimy, że RRZ jest problemem sztywnym gdy: Problem jest charakteryzowany różnymi skalami czasowymi. Stabilność bzwz nakłada silniejsze ograniczenia na krok czasowy niż dokładność. Metody jawne się nie sprawdzają. Następny przykład: sztywny problem w pojedynczym równaniu: dla dużych t – rozwiązanie ustalone u(t)=cos(t) dwie bardzo różne skale czasowe 1) rozwiązania ustalonego okres 2pi 2) skala czasowa tłumienia „odchylenia od stanu ustalonego” exp(-100 t) – czasowa stała zaniku 0.01

rozwiązanie: „stacjonarne” u(t)=cos(t) z u(0)=2 rozwiązanie: „stacjonarne” u(t)=cos(t) jawny schemat Eulera Stały krok czasowy: rozpoznajemy ograniczenie: Dt < 2/|100|

dt=0.1 dt=0.2 dt=0.5 niejawny schemat Eulera – krok stały tutaj: startowane od warunku u(0)=1

wyniki do uzyskania na laboratorium start u(0)=2,tolerancja 1e-2 niejawny, jawny, cos (t) tol1e-2 niejawny akceptowane dt jawny akceptowane dt tol1e-3 niejawny Euler tolerancja 1e-3 niejawny, jawny, cos (t) tol 1e-6 gdy wymagana b. duża dokładność niejawny stawia równie krótkie kroki co jawny, obydwie metody tego samego rzędu dokładności akceptowane dt t

u u t t następny przykład: równanie swobodnego oscylatora van der Pola [historycznie = odkrycie deterministycznego chaosu w lampach firmy Philips aperiodyczne oscylacje przy periodycznym wymuszeniu ] (l=0 = zwykły o. harmoniczny) jawny RK4 = zmienny krok czasowy l=100 l=1 punkt u(t) policzony = krzyż po lewej: krzyże położone rozsądnie w porównaniu ze zmiennością rozwiązania po prawej: problem sztywny gładkie rozwiązanie a krzyże się zlewają u u t t

u t równanie: czasem sztywne czasem nie przydałoby się narzędzie do wykrywania sztywności np. dla podjęcia decyzji: tam gdzie sztywność = schemat niejawny tam gdzie nie = schemat jawny (tańszy) u t

Detekcja sztywności dla problemu nieliniowego (dla liniowego = wystarczy rozwiązać jednorodny problem własny) układ N równań (u,f-wektory) w chwili t rozwiązanie u*(t) rozwiązanie chwilę później opisane przez odchylenie du(t) od u* u(t)= u*(t) + du(t) linearyzacja: zakładamy, że odchylenie małe, rozwijamy f(t,u) względem u wokół f(t,u*): [Taylor dla wektora] macierz Jakobiego [N na N]

problem zlinearyzowany u(t)= u*(t) + du(t) po wyeliminowaniu problem zlinearyzowany przybliżone zachowanie rozwiązania w okolicach t,u*(t) w chwili t*: A=J(t*) rozwiązać problem własny A: dostaniemy wartości własne li: Aby rachunek się powiódł: Dt li musi leżeć w regionie stabilności używanej metody dla wszystkich i. Jeśli duża rozpiętość l : problem będzie sztywny.

Przykład: nieliniowy układ równań z warunkowo występującą sztywnością jeśli druga składowa u urośnie – macierz prawie diagonalna z szerokim zakresem wartości własnych - sztywność

Przykład detekcja sztywności dla: oscylatora van der Pola wartości własne:

niebieskie i czarne: części rzeczywiste wartości własnych l=1 l=100 w w t t jawny RK +automat dt dt dt t t

jawny RK +automat dt l=1 l=100 w w t t dt dt t t u(t) u(t) t

2) do metod niejawnych RK Metody RK – własności tabel Butchera 1)do regionów stabilności jawnych RK 2) do metod niejawnych RK ogólna w wersji ogólnej (niejawnej = sumowanie do s) dla metod jawnych

jeśli f=0 to un=un-1 Metoda musi być dokładna dla rozwiązania stałego: w przeciwnym wypadku powstanie błąd lokalny O(Dt) (metoda nie będzie zbieżna zerowy rząd zbieżności ) jeśli f=0 to un=un-1 to mamy zawsze podobnie, jeśli rząd zbieżności 1 (jak Euler) lub więcej = wynik dokładny dla funkcji liniowej f=1 np RK4

rozwiązania pośrednie = mniej dokładne niż wynik końcowy, ale: zażądajmy aby rozwiązania pośrednie Ui (dla chwili tn-1+ciDt) były rzędu zbieżności pierwszego (nie gorsze niż Euler). Mają działać dokładnie dla f=1 i rozwiązania u=D+t, co daje: u(t+dt)=u(t)+dt dla RK4: 1/2 1 1/6 1/3

l=1 poznajemy metoda RK rzędu dokładności p jeśli działać będzie dokładnie dla wielomianów stopnia p z rozwiązaniem: wstawić dla l=1,2,...,p l=1 poznajemy 1/2 1 1/6 1/3 Zastosowanie do tabeli Butchera RK4: ½= 1/6 *0 +1/3*1/2+1/3*1/2+1/6*1=3/6 1/3= 1/3 * ¼ +1/3 * ¼+1/6=2/6 ¼=1/3*1/8+1/3*1/8+1/6=1/12+1/6=3/12 dla l=5 prawa strona= 0.20833 warunki tego typu są konieczne, ale nie wystarczają do wyznaczenia całej tabeli B. można podać więcej rozważając inne równania i wykorzystując założony rząd dokładności metody.

można podać więcej rozważając inne równania i wykorzystując założony rząd dokładności metody. [zapisujemy dla ogólnej, tj. ewentualnie niejawnej RK] u’= u (1) (2) w notacji wektorowej z oznaczeniami: z (2) eliminujemy U wstawiamy do (1)

zrównując wyrazy tego samego rzędu w Dt dokładne rozwiązanie u(t)= exp(t) un= exp(Dt)un-1 u’= u dokładne: RK: zrównując wyrazy tego samego rzędu w Dt dla metody RK rzędu dokładności p czyli dla k=1,2,..,p

k=1 k=2 dla k=1,2,..,p wcześniej dowiedzieliśmy się, że oraz dla l=2 da wzór po lewej (zał. że pośrednie min rzędu 2) nowe niezależne warunki dostaniemy dla k>2