Multi-Criteria Decision Support using ELECTRE methods

Slides:



Advertisements
Podobne prezentacje
Session 6 Case Study – Elektrim SA Saturday, January 15, 2011 SAL Wroclaw Lectures on Corporate Governance Geoffrey Mazullo Principal Emerging Markets.
Advertisements

I część 1.
G.Broda Helsinki 20-22, September 2010
Projekt Do kariery na skrzydłach – studiuj Aviation Management Projekt współfinansowany ze ś rodków Europejskiego Funduszu Społecznego. Biuro projektu:
Usługi sieciowe Wykład 9 VPN
Statistics – what is that? Statystyka dla gimnazjalistów.
Fundamentals of Data Analysis Lecture 5 Testing of statistical hypotheses pt.2.
Projekt Do kariery na skrzydłach – studiuj Aviation Management Projekt współfinansowany ze ś rodków Europejskiego Funduszu Społecznego. Biuro projektu:
Projekt Do kariery na skrzydłach – studiuj Aviation Management Projekt współfinansowany ze ś rodków Europejskiego Funduszu Społecznego. Biuro projektu:
Projekt Do kariery na skrzydłach – studiuj Aviation Management Projekt współfinansowany ze ś rodków Europejskiego Funduszu Społecznego. Biuro projektu:
Projekt Do kariery na skrzydłach – studiuj Aviation Management Projekt współfinansowany ze ś rodków Europejskiego Funduszu Społecznego. Biuro projektu:
Projekt Do kariery na skrzydłach – studiuj Aviation Management Projekt współfinansowany ze ś rodków Europejskiego Funduszu Społecznego. Biuro projektu:
Sun altitude Made by: Patryk Cichy Patryk Cichy Mateusz Dąbrowicz Mateusz Dąbrowicz Mariusz Król Mariusz Król Mariusz Dyrda Mariusz Dyrda Group leader:
Wstęp do geofizycznej dynamiki płynów. Semestr VI. Wykład
In the heart of this magic city, there is an unusual place right by the charming and vibrant Cracow Old Town, in the sheltered small street - little,
Legal Clinics in Poland Summary of the academic year 2004/2005 activity.
Copyright for librarians - a presentation of new education offer for librarians Agenda: The idea of the project Course content How to use an e-learning.
Software Engineering 0. Information on the Course Leszek J Chmielewski Faculty of Applied Informatics and Mathematics (WZIM) Warsaw University of Life.
Team Building Copyright, 2003 © Jerzy R. Nawrocki Requirements Engineering Lecture.
Dzielenie relacyjne / Relational Division
JET PUMPS introduction POMPY STRUMIENIOWE wstęp
Ministerstwo Gospodarki Poland'sexperience Waldemar Pawlak Deputy Prime Minister, Minister of Economy March 2010.
Polaryzacja światła.
Współprogramy Plan: Motywacja Składnia Scenariusz obiektu współprogramu Przykłady Producent – konsument ( instrukcja attach ) Czytelnik -pisarze ( instukcja.
Creating Public Value Lazarski School of Commerce and Law May, 2011 Edward T. Jennings, Jr. University of Kentucky Martin School of Public Policy and Administration.
„Tworzenie aplikacji sieciowych w języku Java”
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Tworzenie aplikacji sieciowych w języku Java Threads Prezentacja.
POLSKA SZKOŁA PODSTAWOWA IM. LECHA BĄDKOWSKIEGO W LUZINIE
Travel Agency A trip to Śląsk. Something about us… Winter Agency is a tour operator and travel agency providing full services for groups and individuals.
Projekt "Zagraniczna mobilność szkolnej kadry edukacyjnej w ramach projektów indywidualnych współfinansowany przez Unię Europejską w ramach środków Europejskiego.
Dariusz Borczyk Decision-making in the management of failed orthograde endodontic retreatment: A literature review with case reports Dariusz Borczyk BDS.
Volleyball my hobby Oliwia Rejek.
Contents About Kujawiak dance About Kuyavia S. Strzeleckis Kujawiak notes Kuyavias coat of arms Song Quiz.
Trade unions - how to avoid problems ? Kancelaria Prawna Bujakiewicz & Sancewicz 1.
Kosmologia realistyczna Marek Kutschera 05 V 2009 IPJ.
MARCIN JAKUBOWSKI.
In the mobile showroom. Excuse me. Welcome, sir!
______________________________________ TARGU-JIU 2010.
INAUGURACYJNE POSIEDZENIE ZARZĄDU SEKCJI FENS PTF Wydział Fizyki Politechniki Warszawskiej Warszawa 08 maja 2004 r.
Theory of Computer Science - Basic information
Comenius The Great Wonders of Europe The Polish school is called … is called …
Damian Wojdan Kraków,
- For students (12 questions) - For parents (6 questions) - For grandparents (6 questions)
REGIONALNE CENTRUM INFORMACJI I WSPOMAGANIA ORGANIZACJI POZARZĄDOWYCH REGIONAL INFORMATION and SUPPORT CENTER for NGOs EVALUATION V BALTIC SEA NGO FORUM.
TVP SA Odział w Łodzi Łódź ul. Narutowicza 13 TVP Łódź the Year of anniversary – it is already 55 years together.
BLOOD DONATION.
The educational project: „ HIGH SCHOOL EXAM - WE WILL BE ABLE!”
POLAND. we will take you on a journey during which you will learn something about us.
The Grumpy Test If at least one of these pictures does not make you smile, then you are grumpy and need to go back to bed. Test na ponuraka Jak nie usmiechniesz.
Stakeholder Analysis Lazarski University May, 2011 Edward T. Jennings, Jr. University of Kentucky Martin School of Public Policy and Administration.
Uczenie w sieciach Bayesa
I L.O. im. Mikołaja Kopernika in Bielsko-Biała The following presentation has been created within the confines of Socrates- Comenius Programme Teaching.
Teksty prymarne (original texts) to teksty autentyczne, nie są przeznaczone dla celów dydaktycznych; teksty adaptowane (simplified/adapted texts)są przystosowane.
Preface 2.General characteristics of the problem 3.Classical and non-classical approaches 4.Griffith-Irwin concept and linear fracture mechanics.
Lecture 13 Two-Party Computation Protocols
NEW MODEL OF SCHOOL HEADS PREPARATION, INDUCTION AND CONTINUING PROFESSIONAL DEVELOPMENT IN POLAND Roman Dorczak, Grzegorz Mazurkiewicz   Jagiellonian.
Introduction to Numerical Analysis
Polish cadastral system Land Administration Domain Model
I am sorry, but I can’t go out with you
JEDNOŚĆ POMIĘDZY KOŚCIOŁAMI I PASTORAMI UNITY AMONG THE CHURCHES AND PASTORS.
Legal Clinics in Poland Summary of the legal clinics activity in the academic year 2012/2013 Basic information on the Polish Legal Clinics Foundation activity.
POLISH FOR BEGINNERS.
2 Review What is bionomial nomenclature Explain What is a genus
Wydział Elektroniki Kierunek: AiR Zaawansowane metody programowania Wykład 6.
Rights of the child. Kliknij, aby edytować format tekstu konspektu Drugi poziom konspektu  Trzeci poziom konspektu Czwarty poziom konspektu  Piąty poziom.
Kalendarz 2020.
Opracowanie: Katarzyna Gagan, Anna Krawczuk
CSIC 5011 Mini-Project 1:Principle Component Analysis on Finance Data
Previously discusses: different kinds of variables
1.2.4 Hess’s Law.
Zapis prezentacji:

Multi-Criteria Decision Support using ELECTRE methods Roman Słowiński Poznań University of Technology, Poland

Weak points of preference modelling using utility (value) function Utility function distinguishes only 2 possible relations between actions: preference relation: a  b  U(a) > U(b) indifference relation: a  b  U(a) = U(b)  is asymmetric (antisymmetric and irreflexive) and transitive  is symmetric, reflexive and transitive Transitivity of indifference is troublesome, e.g. In consequence, a non-zero indifference threshold qi is necessary An immediate transition from indifference to preference is unrealistic, so a preference threshold pi qi and a weak preference relation  are desirable Another realistic situation which is not modelled by U is incomparability, so a good model should include also an incomparability relation ?  ? 

Four basic preference relations and an outranking relation S Four basic preference relations are: {, , , ?} Criterion with thresholds pi(a)qi(a)0 is called pseudo-criterion The four basic situations of indifference, strict preference, weak preference, and incomparability are sufficient for establishing a realistic model of Decision Maker’s (DM’s) preferences gi(b) gi(a) gi(a)-pi(b) gi(a)-qi(b) gi(a)+qi(a) gi(a)+pi(a) ab ba ba ab ab preference

Four basic preference relations and an outranking relation S Axiom of limited comparability (Roy 1985): Whatever the actions considered, the criteria used to compare them, and the information available, one can develop a satisfactory model of DM’s preferences by assigning one, or a grouping of two or three of the four basic situations, to any pair of actions. Outranking relation S groups three basic preference relations: S = {, , } – reflexive and non-transitive aSb means: „action a is at least as good as action b” For each couple a,bA: aSb  non bSa  ab  ab aSb  bSa  ab non aSb  non bSa  a?b

ELECTRE Is: choice problem (P) Chosen subset A’ of best actions A x x x x x x x x x x Rejected subset A\A’ of actions

ELECTRE Is Input data: finite set of actions A={a, b, c, …, h} consistent family of criteria G={g1, g2, …, gn} Preferential information (i=1,…,k) intracriteria: – indifference thresholds qi(a)=iqgi(a)+iq – preference thresholds pi(a)=ipgi(a)+ip intercriteria: – importance coefficients (weights) of criteria ki – veto thresholds vi(a)=ivgi(a)+iv 0qi(a)pi(a)vi(a) are functions of a worse evaluation of the two being compared The preference model, i.e. outranking relation S in set A is constructed via concordance and discordance tests

ELECTRE Is - concordance test Checks if the coalition of criteria concordant with the hypothesis aSb is strong enough (for each couple a,bA) Concordance coefficient Ci(a,b) for each criterion gi: gi(b) gi(a) gi(a)-pi(b) gi(a)-qi(b) gi(a)+qi(a) gi(a)+pi(a) preference Ci(a,b) 1 gain-type gi(b) gi(a) gi(a)-pi(a) gi(a)-qi(a) gi(a)+qi(b) gi(a)+pi(b) preference Ci(a,b) 1 cost-type

ELECTRE Is - concordance test Aggregation of concordance coefficients for a,bA: C(a,b)  [0, 1] Concordance test is positif if: C(a,b)   where  is a cutting level, such that

ELECTRE Is - discordance test and outranking relation Checks if among criteria discordant with the hypothesis aSb there is a strong opposition against aSb (for each a,bA such that C(a,b)  ) For a discordant criterion gi, the opposition is strong if: (for gain-type criterion) gi(b) – gi(a)  vi(a) (for cost-type criterion) gi(a) – gi(b)  vi(a) Conclusion: aSb is true if and only if C(a,b)   and there is no criterion strongly opposed to the hypothesis In result, for each couple a,bA, one obtains relation S either true (1) or false (0) The preference structure in set A can be represented by a graph where nodes represent actions and arcs represent relation S

ELECTRE Is – exploitation of the outranking graph The outranking graph S represents a preference structure in A What are the best actions ? Kernel K of the outranking graph: actions (nodes) belonging to K do not outrank each other (no arc between them) each action not belonging to K is directly outranked by at least one action from K S a b c d e 1 a e d c b

ELECTRE Is – search for the kernel In order to have a single kernel, the graph should be acyclic Cycles should be first eliminated in one of two ways: replacing the cycle by a dummy node representing an equivalence class (clique) a e d c b cycle {c,e} a d f b f={c,e}

a b e, f d c

ELECTRE Is – search for the kernel In order to have a single kernel, the graph should be acyclic Cycles should be first eliminated in one of two ways: replacing the cycle by a dummy node representing an equivalence class (clique) cutting the cycle = eliminationg the „weakest” arcs (outranking relations) a e d c b cycle {c,e} a e d c b

Algorytm wykrywania cykli w grafie . Utworzyć tablicę z jednym wejściem. W każdym wierszu wpisać indeksy bezpośrednich następników danego wierzchołka xi (tzw. listę ZA). . Poszukać linię pustą i skreślić numer tej linii wszędzie tam gdzie występuje w tablicy. Linie z samymi skreślonymi indeksami traktować jak puste. Skreślanie kontynuować aż do wyczerpania możliwości. . Jeśli wszystkie indeksy mogły być skreślone, to graf nie ma cykli. W przeciwnym razie ma co najmniej jednej cykl. . Wybrać indeks dowolnej linii niepustej a w niej dowolny nie skreślony indeks i skreślić go. Skreślanie kontynuować do momentu, gdy sekwencja skreślonych indeksów utworzy cykl.

Algorytm wykrywania cykli w grafie . Utworzyć tablicę z jednym wejściem. W każdym wierszu wpisać indeksy bezpośrednich następników danego wierzchołka xi (tzw. listę ZA). . Poszukać linię pustą i skreślić numer tej linii wszędzie tam gdzie występuje w tablicy. Linie z samymi skreślonymi indeksami traktować jak puste. Skreślanie kontynuować aż do wyczerpania możliwości. . Jeśli wszystkie indeksy mogły być skreślone, to graf nie ma cykli. W przeciwnym razie ma co najmniej jednej cykl. . Wybrać indeks dowolnej linii niepustej a w niej dowolny nie skreślony indeks i skreślić go. Skreślanie kontynuować do momentu, gdy sekwencja skreślonych indeksów utworzy cykl.

Algorytm znajdowania jądra w grafie acyklicznym . Utworzyć tablicę z jednym wejściem. W każdym wierszu wpisać indeksy bezpośrednich poprzedników danego wierzchołka xi (tzw. listę PRZED). . Zaznaczyć linię pustą (znaczkiem ). Skreślić całe linie, w których występuje wierzchołek z indeksem zaznaczonej linii pustej. Skreślić indeks skreślonego wiersza gdziekolwiek pojawia się w tablicy. Każda linia z samymi skreślonymi indeksami jest uznawana z pustą. Iterować aż do wyczerpania możliwości. . Jeśli wszystkie indeksy mogły być zaznaczone lub skreślone, to graf ma pojedyncze jądro złożone z wierzchołków odpowiadających zaznaczonym () wierszom.

ELECTRE Is – final recommendation The best actions = the kernel: Actions in the kernel can be: initial (without predecessors) isolated (incomparable to all others) intermediate (both outranking and outranked) final (without successors) a d f b K={b} a e d c b K={b,e}

ELECTRE Is - example kPRICE=3 kTIME=5 kCOMFORT=2

ELECTRE Is - example =0.75

ELECTRE Is - example

ELECTRE Is - example

ELECTRE Is - example

ELECTRE Is - example

ELECTRE Is - example Kernel= {RER}

ELECTRE TRI: sorting problem (P) ... x x x x x x x x x x x x x x x A Class 1 Class 2 Class p Class 1  Class 2  ...  Class p

ELECTRE TRI Input data: finite set of actions A={a, b, c, …, h} consistent family of criteria G={g1, g2, …, gn} preference-ordered decision classes Clt, t=1,…,p Decision classes are caracterized by limit profiles bt, t=0,1,…,p The preference model, i.e. outranking relation S is constructed for each couple (a, bt), for every aA and t=0,1,…,p g1 g2 g3  gn b0 b1 bp-2 bp-1 bp b2 Cl1 Cl2 Clp-1 Clp a d

ELECTRE TRI Preferential information (i=1,…,k) intracriteria: – indifference thresholds qit for each class limit, t=0,1,…,p – preference thresholds pit for each class limit, t=0,1,…,p intercriteria: – importance coefficients (weights) of criteria ki – veto thresholds for each class limit vit, t=0,1,…,p 0qitpitvit are constant for each class limit bt, t=0,1,…,p Concordance and discordance tests of ELECTRE TRI validate or invalidate the assertions aSbt and btSa

ELECTRE TRI - concordance test Checks how strong is the coalition of criteria concordant with the hypothesis aSbt (for each couple (a,bt), aA and t=0,1,…,p) Concordance coefficient Ci(a,bt) for each criterion gi: gi(bt) preference Ci(a,bt) 1 gain-type gi(bt)-pit gi(bt)-qit gi(bt)+qit gi(bt)+pit gi(a) gi(bt) gi(a) gi(bt)-pit gi(bt)-qit gi(bt)+qit gi(bt)+pit preference Ci(a,bt) 1 cost-type

ELECTRE TRI - concordance test Aggregation of concordance coefficients for aA and bt, t=0,1,…,p: C(a,bt)  [0, 1]

ELECTRE TRI - discordance test Checks how strong is the coalition of criteria discordant with the hypothesis aSbt (for each couple (a,bt), aA and t=0,1,…,p) Discordance coefficient Di(a,bt) for each criterion gi: gi(a) preference Di(a,bt) 1 gain-type Ci(a,bt) gi(bt)-vit gi(bt) gi(bt)-pit gi(bt)-qit gi(bt)+qit gi(bt)+pit gi(a) 1 Ci(a,bt) preference cost-type gi(bt)+vit Di(a,bt) gi(bt)-pit gi(bt)-qit gi(bt) gi(bt)+qit gi(bt)+pit

ELECTRE TRI – credibility of the outranking relation Conclusion from concordance and discordance tests – credibility of the outranking relation: (a,bt)[0, 1] What is the assignment of actions to decision classes ? (a,bt) (bt,a) a  bt bt{}a a ? bt a{}bt not yes

ELECTRE TRI – exploitation of S and final recommendation Assignment of actions to decision classes based on two ways of comparison of actions aA to limit profiles bt, t=0,1,…,p Pessimistic: compare action a successively to each profile bt, t=p-1,…,1,0; if bt is the first profile such that aSbt, then aClt+1 Pessimistic, because for zero thresholds, aClt+1  gi(a)gi(bt) i, e.g. aCl1 g1 g2 g3  gn b0 b1 bp-2 bp-1 bp b2 Cl1 Cl2 Clp-1 Clp a comparison of action a to profiles bt

ELECTRE TRI – exploitation of S and final recommendation Assignment of actions to decision classes based on two ways of comparison of actions aA to limit profiles bt, t=0,1,…,p Optimistic: compare action a successively to each profile bt, t=1,…,p; if bt is the first profile such that bt{  }a, then aClt Optimistic, because for zero thresholds, aClt  gi(bt)>gi(a) i, e.g. aCl2 g1 g2 g3  gn b0 b1 bp-2 bp-1 bp b2 Cl1 Cl2 Clp-1 Clp a comparison of action a to profiles bt

ELECTRE TRI - example kPRICE=3 kTIME=5 kCOMFORT=2 =0.75

ELECTRE TRI - example

ELECTRE TRI - example =0.75