podsumowanie wiadomości

Slides:



Advertisements
Podobne prezentacje
Obraz w zwierciadle płaskim
Advertisements

Prawo odbicia.
Obraz w zwierciadle kulistym wypukłym
. Obrazy w zwierciadle kulistym wklęsłym Zwierciadło kuliste wklęsłe
Kolory w naszym życiu-a co do tego ma światło białe?
Karolina Sobierajska i Maciej Wojtczak
OPTYKA.
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Konstrukcje obrazów w zwierciadłach i soczewkach.
Obrazy otrzymywane za pomocą zwierciadła wklęsłego
Fale t t + Dt.
ŚWIATŁO.
Proste przyrządy optyczne
Optyka geometryczna.
Maria Zatorska.
Dane INFORMACYJNE (do uzupełnienia)
WYKŁAD 2 ZWIERCIADŁA (płaskie, wypukłe i wklęsłe)
Fale - przypomnienie Fala - zaburzenie przemieszczające się w przestrzeni i w czasie. y(t) = Asin(wt- kx) A – amplituda fali kx – wt – faza fali k –
Opracowała Paulina Bednarz
DANE INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ W PSZCZEWIE Gimnazjum nr 60 im. Cyryla Ratajskiego w Poznaniu ID grupy: 98/83_MF_G1 98/15_MF_G2 Opiekun: JÓZEF.
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
Dane INFORMACYJNE (do uzupełnienia)
Polaryzacja światła Fala elektromagnetyczna jest fala poprzeczną, gdyż drgające wektory E i B są prostopadłe do kierunku rozchodzenia się fali. Cecha charakterystyczną.
Soczewki – konstrukcja obrazu Krótkowzroczność i dalekowzroczność.
LUPA.
Optyka geometryczna.
ID grupy: 97/2 _MF_G2 Kompetencja: MATEMATYCZNO - FIZYCZNA Temat projektowy: ZJAWISKA OPTYCZNE Semestr II / rok szkolny : 2009 / 2010.
Oświecenie Team: Aurelia Wojtalewicz, Kacper Siemianowski,
„eSzkoła – Moja Wielkopolska” „Sztuka fotografowania, czyli aparat fotograficzny od środka” Projekt współfinansowany ze środków  Unii Europejskiej w.
h1h1 h2h2 O1O1 O2O2 P1P1 P2P2 1 r1r1 2 r2r2 x y Korzystając ze wzoru Który był słuszny dla małych kątów ( co w przypadku soczewek będzie możliwe dla promieni.
Dane INFORMACYJNE Nazwa szkoły:
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH
Dane INFORMACYJNE Gimnazjum im. Mieszka I w Cedyni ID grupy: 98_10_G1 Kompetencja: Matematyczno - fizyczna Temat projektowy: Ciekawa optyka Semestr/rok.
Kompetencja Fizyka i Matematyka Gimnazjum w Gołuchowie
DANE INFORMACYJNE Nazwa szkoły: ZSP im. Gen. Wł. Andersa w Złocieńcu
Nazwa szkoły: Gimnazjum nr 58 im. Jana Nowaka Jeziorańskiego w Poznaniu ID grupy: 98/62_MF_G2 Opiekun Aneta Waszkowiak Kompetencja: matematyczno- fizyczna.
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Przyrządy optyczne.
Temat: Płytka równoległościenna i pryzmat.
Zjawiska optyczne Natalia Kosowska.
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół Gastronomicznych
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół w Sławnie
Dane INFORMACYJNE ID grupy: B3 Lokalizacja: Białystok
1.
Autorstwo: grupa 2 Stargard Szczeciński I Liceum Ogólnokształcące
Optyka geometryczna Dział 7.
Soczewki Soczewką nazywamy ciało przezroczyste, ograniczone dwiema powierzchniami, z których przynajmniej jedna nie jest płaska.
Jak powstają obrazy w zwierciadłach wklęsłych?
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Optyka Czyli nauka o świetle..
Dodatek 1 F G A B C D E x y f h h’ F
Przygotowanie do egzaminu gimnazjalnego
„Wszechświat jest utkany ze światła”
Zjawiska falowe.
WYKŁAD 3 UKŁADY OGNISKUJĄCE OPARTE NA ZAŁAMANIU ŚWIATŁA, część I
WYKŁAD 4 UKŁADY OGNISKUJĄCE OPARTE NA ZAŁAMANIU ŚWIATŁA, część II PRYZMATY, DYSPERSJA ŚWIATŁA I PRYZMATYCZNE PRZYRZĄDY SPEKTRALNE.
Fale elektromagnetyczne
WYKORZYSTANIE ZASAD OPTYKI W NASZYM ŻYCIU. Soczewka Jest to proste urządzenie optyczne składające się z jednego lub kilku bloków przezroczystego materiału.
Zwierciadło płaskie. Prawo odbicia i załamania światła. Całkowite wewnętrzne odbicie. Autorzy: dr inż. Florian Brom, dr Beata Zimnicka Projekt współfinansowany.
Dyspersja światła białego wyk. Agata Niezgoda Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego.
W każdej lustrzance, czyli aparacie fotograficznym z wymiennymi obiektywami i lusterkiem kierującym promienie świetlne do celownika optycznego, znajduje.
Eksperyment edukacją przyszłości – innowacyjny program kształcenia w elbląskich szkołach gimnazjalnych. Program współfinansowany ze środków Unii Europejskiej.
14. Obrazy Obrazy w płaskich zwierciadłach
1.
Konstrukcje obrazów w soczewkach oraz zwierciadłach
1.
Przyrzady Optyczne Przyrządy optyczne, są to urządzenia optyczne służące do zmieniania drogi promieni świetlnych, a czasem także promieni niektórych.
MIKROSKOP ŚWIETLNY.
Zapis prezentacji:

podsumowanie wiadomości OPTYKA podsumowanie wiadomości Optyka to dział fizyki, zajmujący się badaniem natury światła, prawami opisującymi jego emisję, rozchodzenie się, oddziaływanie z materią oraz pochłanianie przez materię. Światło jest to fala elektromagnetyczna o długości zawartej pomiędzy 380nm a 780nm, czyli promieniowanie widzialne odbierane przez siatkówkę oka.

Właściwości światła c=300 000 km/s, źródłem światła jest każde ciało wysyłające promieniowanie widzialne, promień świetlny jest to wąska wiązka światła (linia wzdłuż której rozchodzi się światło), w jednorodnym ośrodku optycznym światło rozchodzi się po liniach prostych, cień to obszar powierzchni do którego nie dochodzi światło, światło jest falą elektromagnetyczną o długości 380 – 780 nm,

Gdy źródło światła ma pewną szerokość, porównywalną z szerokością przeszkody, albo gdy mamy więcej źródeł światła. Powstaje wtedy oprócz cienia także półcień. Zaćmienie słońca

1. Dlaczego piłkarze grający przy sztucznym oświetleniu rzucają cztery cienie? 2. Wymień kilka przykładów, w których zaobserwować można prostoliniowe rozchodzenie się światła. 3. Opisz działanie zegara słonecznego.

Źródła światła – to ciała świecące własnym światłem: sztuczne – ciała rozgrzane do wysokiej temperatury ( żarówka), naturalne – gwiazdy ( Słońce), pobudzone do świecenia cząsteczki gazów w polu elektrycznym ( neonówki), w wyniku reakcji chemicznych - ( płomień świecy, organizmy żywe) pochłaniane promieniowanie ultrafioletowe tzw. luminofor w świetlówkach.

Odbicie i rozproszenie światła Kąt padania α jest równy kątowi odbicia β. Promień padający, promień odbity i normalna do Powierzchni leżą w jednej płaszczyźnie. 40 ZADANIE Kąt padania promienia świetlnego na lustro jest o 100 mniejszy niż kąt między promieniem padającym a lustrem. Oblicz kąt odbicia.

Odbicie i rozproszenie światła Kątem padania nazywamy kąt pomiędzy promieniem padającym na powierzchnię odbijającą, a normalną (prostą prostopadłą do powierzchni odbijającej). Kątem odbicia nazywamy kąt pomiędzy promieniem odbitym, a normalną. Kąt padania i kąt odbicia liczone są od normalnej. 40 Kąt padania α jest równy kątowi odbicia β. Promień padający, promień odbity i normalna do Powierzchni leżą w jednej płaszczyźnie. ZADANIE Kąt padania promienia świetlnego na lustro jest o 100 mniejszy niż kąt między promieniem padającym a lustrem. Oblicz kąt odbicia.

Z rysunku widać, że oprócz przedmiotu A pojawiają się w naszym polu widzenia trzy jego obrazy: B, C i D

Oświetlone miejsce widzimy z dowolnego miejsca, pod dowolnym kątem Oświetlone miejsce widzimy z dowolnego miejsca, pod dowolnym kątem. Zjawisko takie nazywamy rozpraszaniem. Mamy z nim do czynienia gdy światło pada na chropowatą powierzchnię. Promienie światła odbijają się we wszystkie strony od rozmieszczonych w różny sposób nierówności.

Zwierciadła Zwierciadło optyczne jest to gładka powierzchnia o nierównościach mniejszych niż długość fali świetlnej. Z tego względu zwierciadło w minimalnym stopniu rozprasza światło, odbijając większą jego część. Dawniej zwierciadła wykonywano poprzez polerowanie metalu, później została opanowana technologia nakładania na taflę szklaną cienkiej warstwy metalicznej (zwykle srebra) metodami chemicznymi. Obecnie lustra produkuje się poprzez próżniowe naparowanie na szkło cienkiej warstwy metalu (najczęściej glinu).

Zwierciadła płaskie A obiekt A’ obraz pozorny

Zwierciadła :  wklęsłe  wypukłe

Zwierciadło sferyczne wklęsłe Zwierciadło sferyczne wklęsłe stanowi wewnętrzną powierzchnie sfery. Kierujemy na nie wiązkę promieni równoległych. Możemy stwierdzić, że: odległość OA jest równa długości promienia sfery - R punkt F nazywamy ogniskiem zwierciadła, przecinają się w nim promienie wiązki równoległej odbite od zwierciadła, leży on w połowie odcinka OA odcinek FA nazywamy ogniskową zwierciadła i oznaczamy f.

Równanie obrazu Powiększenie obrazu Obrazy powstałe w zwierciadle sferycznym zależą od położenia przedmiotu względem soczewki. Przyjmijmy oznaczenia: x - odległość przedmiotu od zwierciadła h - wysokość przedmiotu y - odległość obrazu od zwierciadła H - wysokość obrazu f - ogniskowa p - powiększenie Równanie obrazu Powiększenie obrazu

(odległość przedmiotu dużo większa od podwójnej ogniskowej) Obraz dla x > 2f (odległość przedmiotu dużo większa od podwójnej ogniskowej) Rodzaj obrazu: rzeczywisty odwrócony, pomniejszony (p < 1) Odległość obrazu: f< y< 2f

(odległość przedmiotu równa podwójnej ogniskowej) Obraz dla x = 2f (odległość przedmiotu równa podwójnej ogniskowej) Rodzaj obrazu: rzeczywisty odwrócony, takich samych rozmiarów (p = 1) Odległość obrazu: y = 2f

Obraz dla f < x < 2f (odległość przedmiotu większa od ogniskowej i mniejsza od podwójnej ogniskowej) Rodzaj obrazu: rzeczywisty odwrócony, powiększony (p > 1) Odległość obrazu: y > 2f

(odległość przedmiotu równa ogniskowej) Obraz dla x = f (odległość przedmiotu równa ogniskowej) Rodzaj obrazu: brak obrazu

(odległość przedmiotu mniejsza od ogniskowej) Obraz dla x < f (odległość przedmiotu mniejsza od ogniskowej) Rodzaj obrazu: pozorny prosty (nieodwrócony) powiększony (p > 1) Odległość obrazu: y < 0

Zwierciadło sferyczne wypukłe Obraz dla x = f (odległość przedmiotu równa ogniskowej) Rodzaj obrazu: pozorny, prosty, pomniejszony (p < 1) Odległość obrazu: y < 0

Obrazy urojone (pozorne) są zawsze proste, a obrazy rzeczywiste są zawsze odwrócone.

Rodzaj otrzymanego obrazu w zwierciadle wklęsłym zależy od wartości ogniskowej (f) oraz odległości przedmiotu od zwierciadła. Oto przykłady otrzymanych obrazów: x>2f - obraz rzeczywisty, pomniejszony, odwrócony x = 2f - obraz rzeczywisty, o tych samych rozmiarach, odwrócony f < x < 2f - obraz rzeczywisty, powiększony, odwrócony x = f - brak obrazu x < f - obraz pozorny, pomniejszony, prosty

Zastosowania zwierciadeł Zwierciadła płaskie są typem najczęściej spotykanym w życiu codziennym: lustra i lusterka powszechnego użytku (ścienne, łazienkowe, kieszonkowe, dekoracyjne itp.), lustra fenickie (często mylnie nazywane lustrem weneckim) – odmiana lustra, która odbija część światła, a część przepuszcza, w lustrzankach jako element kierujący światło do wizjera, podnoszony na czas robienia zdjęcia, w laserach jako elementy ograniczające wnękę rezonansową, jako elementy zmieniające bieg światła w urządzeniach optycznych

Zwierciadła wypukłe i wklęsłe stosowane są między innymi w: teleskopach obiektywach lustrzanych „powiększających” lusterkach kosmetycznych, samochodowych lusterkach wstecznych, lustrach ustawionych przy drogach w miejscach szczególnie niebezpiecznych o ograniczonej widoczności lampach i reflektorach, lupach, mikroskopach, aparatach fotograficznych

ZAŁAMANIE ŚWIATŁA Jeżeli wiązka światła pada ukośnie na granicę dwóch ośrodków, to ulega załamaniu. Promień padający, normalna do powierzchni granicznej i promień załamany leżą w jednej płaszczyźnie

powietrze kąt padania normalna promień załamany szkło kąt załamania

Względny współczynnik załamania ośrodka 2 (do którego światło weszło) względem ośrodka 1 (z którego światło wyszło) jest równy stosunkowi prędkości światła w ośrodku 1 do prędkości światła w ośrodku 2. gdzie: v1, v2 – prędkości światła w ośrodkach 1 i 2, λ1, λ2 – długości fal świetlnych w ośrodkach 1 i 2 Bezwzględny współczynnik załamania danego ośrodka jest równy stosunkowi prędkości światła w próżni do prędkości w danym ośrodku. gdzie: c – prędkość światła w próżni, v – prędkość światła w danym ośrodku.

Soczewki – ciała przezroczyste ograniczone z dwóch stron powierzchnią kulistą lub jedną kulistą a drugą płaską. rozpraszające skupiające

Tak zachowuje się światło po przejściu przez soczewkę: rozpraszającą skupiającą

Soczewka skupiająca

Soczewka rozpraszająca

Obrazy otrzymywane za pomocą soczewek zależą od odległości x przedmiotu od soczewki. X > 2f obraz : rzeczywisty,zmniejszony, odwrócony

f< x < 2f obraz : rzeczywisty, powiększony, odwrócony x< f obraz: pozorny, powiększony, prosty

Jak za pomocą soczewki skupiającej otrzymać wiązkę promieni równoległych ? Należy źródło światła umieścić w ognisku soczewki.

Ognisko soczewki – w optyce, punkt, w którym przecinają się promienie świetlne, początkowo równoległe do osi optycznej, po przejściu przez układ optyczny skupiający (ognisko rzeczywiste) lub punkt, w którym przecinają się przedłużenia tych promieni po przejściu przez rozpraszający układ optyczny (ognisko pozorne).

Ogniskowa– odległość pomiędzy ogniskiem układu optycznego a punktem głównym układu optycznego, np. odległość środka soczewki od punktu, w którym skupione zostaną promienie świetlne, które przed przejściem przez soczewkę biegły równolegle do jej osi. Zdolność skupiająca – wielkość definiowana dla pojedynczych soczewek i dla układu optycznego oznaczająca odwrotność ogniskowej soczewki lub układu. Zdolność zbierającą mierzy się w dioptriach. Wymiarem dioptrii jest odwrotność metra

Soczewki są stosowane w wielu przyrządach optycznych do tworzenia obrazu lub kształtowania wiązki światła: * mikroskopach * lunetach * lornetkach * lupach * okularach leczniczych * soczewkach kontaktowych * spektrofotometrach * aparatach fotograficznych * kamerach filmowych * druku soczewkowym * świetlnych semaforach kolejowych

Pryzmat - bryła z materiału przezroczystego o co najmniej dwóch ścianach płaskich nachylonych do siebie pod kątem (tzn. kątem łamiącym pryzmatu).

Najbardziej odchyli się barwa fioletowa, najmniej czerwona Światło białe wchodząc do pryzmatu, ulega rozszczepieniu, ponieważ każdej barwie odpowiada inna długość fali, a więc różna prędkość w ciałach przezroczystych i zgodnie z prawem załamania każda barwa załamie się pod innym kątem – powstanie widmo ciągłe. długość fal świetlnych 800 nm 400 nm Najbardziej odchyli się barwa fioletowa, najmniej czerwona .