Ocena zarządzania funduszami inwestycyjnymi. Średnie stopy zwrotu funduszy w 2011 roku.

Slides:



Advertisements
Podobne prezentacje
Ocena dokładności i trafności prognoz
Advertisements

KSZTAŁTOWANIE STRUKTURY KAPITAŁU A DŹWIGNIA FINANSOWA
Rozdział V - Wycena obligacji
Wskaźniki analizy technicznej
Kontrakty Terminowe Futures
Wskaźniki wrażliwości kontraktu opcyjnego
Jak mierzyć asymetrię zjawiska?
MIARY ZMIENNOŚCI Główne (wywołujące zmienność systematyczną)
Modelowanie lokowania aktywów
Modelowanie lokowania aktywów
Mierniki efektywności inwestycji finansowych
Analiza portfeli dwu- oraz trzy-akcyjnych
Portfel wielu akcji. Model Sharpe’a
Współczynnik beta Modele jedno-, wieloczynnikowe Model jednowskaźnikowy Sharpe’a Linia papierów wartościowych.
Statystyczne parametry akcji
Granica efektywna zbioru możliwości inwestycyjnych Linia rynku kapitałowego Linia papierów wartościowych.
Granica efektywna zbioru możliwości inwestycyjnych Linia rynku kapitałowego Linia papierów wartościowych.
Olimpia Markiewicz Dominika Milczarek-Andrzejewska AKTYWA RYZYKOWNE
Ubezpieczanie portfela z wykorzystaniem zmodyfikowanej strategii zabezpieczającej delta Tomasz Węgrzyn Katedra Matematyki Stosowanej Akademia Ekonomiczna.
Legal and Financial Aspects of Establishing and Managing Endowments Warszawa, dn
Zysk Absolutny Zyskuj niezależnie od sytuacji na rynku Opis Strategii.
Sprawy organizacyjne Wzajemne przedstawienie się,
Model CAPM W celu prawidłowego wyjaśnienia zjawisk zachodzących na rynku kapitałowym, należy uwzględnić wzajemne oddziaływania na siebie inwestorów. W.
BOŻENA NADOLNA INSTRUMENTY POCHODNE.
Rynek otwartych funduszy emerytalnych Raport roczny,
Fundusze inwestycyjne
Sprawozdanie finansowe NoRiskNoFun. A. Sprawozdanie finansowe.
Plan zajęć: Czynniki kształtujące wartość firmy Podstawowe pojęcia
Agnieszka Ciąćka Emilia Skrzypiec
VII Konferencja Naukowo- Techniczna ZET 2013 Determinanty struktury kapitału spółek elektroenergetycznych Jak optymalizować strukturę kapitału? Dr hab.
Określenie wartości (wycena) papierów wartościowych
Mierniki efektywności inwestycji finansowych
Analiza portfeli dwu- oraz trzy-akcyjnych
Określenie wartości (wycena) papierów wartościowych
INSTRUMENTY DŁUŻNE.
OPCJE Ograniczenia na cenę opcji
Granica efektywna zbioru możliwości inwestycyjnych Linia rynku kapitałowego Linia papierów wartościowych.
Portfel efektywny Granica efektywna zbioru możliwości inwestycyjnych Linia rynku kapitałowego Regresja liniowa.
OPCJE NA GPW Zespół Rekomendacji i Analiz Giełdowych
ANALIZA WRAŻLIWOŚCI.
Analiza portfeli dwu- oraz trzy-akcyjnych
Metody oceny opłacalności projektów inwestycyjnych
Statystyczne parametry akcji Średnie Miary rozproszenia Miary współzależności.
Oczekiwana przez inwestora stopa dochodu. Czas a wartość „Wartość” czasu w finansach – wraz z upływem czasu następuje spadek subiektywnej wartości dóbr.
Statystyczna analiza danych w praktyce
Jak mierzyć asymetrię zjawiska? Wykład 5. Miary jednej cechy  Miary poziomu  Miary dyspersji (zmienności, zróżnicowania, rozproszenia)  Miary asymetrii.
Statystyczna analiza danych
Statystyczna analiza danych
Teoria arbitrażu cenowego i ocena efektywności portfela.
Analiza portfeli dwu- oraz trzy-akcyjnych. Portfel dwóch akcji bez możliwości krótkiej sprzedaży W - wartość portfela   W = a P 1 + b P 2   P 1 -
Ćwiczenia Zarządzanie Ryzykiem 1 Dr Renata Karkowska, ćwiczenia „Zarządzanie ryzykiem”, 2013.
Logistyka – Ćwiczenia nr 6
Ryzyko a stopa zwrotu. Standardowe narzędzia inwestowania Analiza fundamentalna – ocena kondycji i perspektyw rozwoju podmiotu emitującego papiery wartościowe.
Modele rynku kapitałowego
Ocena efektywności portfela. Ocena efektywności zarządzania portfelem Cele zarządzania portfelem: -Osiągnięcie ponadprzeciętnej stopy zwrotu dla danej.
Wprowadzenie do inwestycji. Inwestycja Inwestycja – zaangażowanie określonej kwoty kapitału na pewien okres czasu w celu osiągnięcia w przyszłości przychodu.
Modele nieliniowe sprowadzane do liniowych
STATYSTYKA – kurs podstawowy wykład 11
Bankowość Zajęcia 6 Wydział Zarządzania UW, Aleksandra Luterek.
Modele rynku kapitałowego 1. Teoria optymalnego portfela inwestycyjnego Markowitza ma charakter modelu normatywnego tzn. formułuje zasady jakimi powinien.
Ocena zarządzania funduszami inwestycyjnymi
Kołodziejczyk Ewelina
Modele rynku kapitałowego
Materiały analityczne DM BZ WBK
Fundusze inwestycyjne indeksowe
Wprowadzenie do inwestycji
Jak czytać tabele giełdowe
MIARY STATYSTYCZNE Warunki egzaminu.
Korelacja i regresja liniowa
ZARZĄDZANIE PORTFELEM PAPIERÓW WARTOŚCIOWYCH
Zapis prezentacji:

Ocena zarządzania funduszami inwestycyjnymi

Średnie stopy zwrotu funduszy w 2011 roku

Średnie stopy zwrotu 12M funduszy inwestycyjnych a oprocentowanie lokat bankowych Źródło: PKO Bank Polski

Stopy zwrotu funduszy największych TFI – 12M Źródło: PKO Bank Polski

Stopy zwrotu funduszy największych TFI – 24M Źródło: PKO Bank Polski

Ocena efektywności zarządzania Cele zarządzania portfelem: - Osiągnięcie ponadprzeciętnej stopy zwrotu dla danej klasy aktywów (danego poziomu ryzyka), - Pełna dywersyfikacja portfela w celu całkowitej eliminacji ryzyka specyficznego charakterystycznego dla benchmarku

Ocena efektywności zarządzania – teoria portfelowa Podstawowe mierniki oceny efektywności zarządzania wywodzą się z teorii portfelowej Markowitza i sformułowanych w jej granicach modeli równowagi rynku kapitałowgo: Sharpe’a i CAPM.

8 Wskaźniki oceny efektywności zarządzania portfelem Wskaźnik Sharpe’a Wskaźnik Treynora Alfa Jensena

Wskaźnik Sharpe’a Zwany też wynagrodzenie za zmienność. Wg Sharpe’a inwestor jest gotów ponosić większe ryzyko, pod warunkiem że otrzymuje w zamian relatywnie wyższe zyski. Miara efektywności wywodzi się więc z równania linii CML:

Interpretacja wskaźnika Sharpe’a Jest to iloraz nadwyżkowej stopy zwrotu oraz całkowitego ryzyka portfela. Wskaźnik Sharpe’a udziela trzech zasadniczych informacji: - określa nadwyżkowy zwrot na jednostkę ryzyka, - im wyższa wartość indeksu Sh tym lepiej oceniany portfel, - może służyć do tworzenia rankingów portfeli.

Przykład 1 Dane są informacje na temat czterech portfeli inwestycyjnych stopa zwrotuodchylenie standardowe A0,090,16 B0,100,18 C0,140,24 D0,200,30 Wyznacz wskaźniki Sharpe’a i zbuduj ranking portfeli jeśli wiadomo, że stopa wolna od ryzyka wynosi 8%, stopa zwrotu z portfela rynkowego 12%, a odchylenie standardowe stopy zwrotu z portfela rynkowego 20%

Wskaźnik Sharpe’a ex ante

Wskaźnik Sharpe’a – rewizja 1994 Rewizja wskaźnika dokonana w 1994 roku przez samego autora uwzględnia fakt, że stopa wolna od ryzyka może ulegać zmianie w okresie inwestycji.

Indeks Sortino gdzie: R – stopa zwrotu z akcji (portfela) T – wymagana stopa zwrotu DR – downside risk – semiodchylenie standardowe stopy zwrotu z akcji (portfela)

Semiodchylenie standardowe Semiodchylenie standardowe interpretowane jest podobnie jak odchylenie standardowe. Jest to średnie ważone odchylenie od oczekiwanej stopy zwrotu, ale w tym przypadku tylko stóp zwrotu mniejszych od średniej. Inaczej pierwiastek kwadratowy z semiwariancji

Information ratio gdzie: R b – stopa zwrotu z benchmarku

Wskaźnik Treynora Miernik zaprezentowany w 1965 roku przez Jacka Treynora. Wynagrodzenie za wrażliwość. Wywodzi się z modelu CAPM. Bazą jest linia SML:

Interpretacja wskaźnika Treynora Miara Treynora jest ilorazem dodatkowej stopy zwrotu ponad stopę wolną od ryzyka i ryzyka portfela mierzonego betą. Wyższe wartości wskaźnika oznaczają lepsze wyniki zarządzania portfelem. Dodatnie wartości wskaźnika wskazują portfele o stopie zwrotu wyższej od stopy wolnej od ryzyka. Treynor uwzględnia więc w odróżnieniu od Sharpe’a tylko ryzyko systematyczne, co wynika z przyjęcia założenia o doskonałej dywersyfikacji portfela.

Przykład 2 Dane są informacje na temat czterech portfeli inwestycyjnych stopa zwrotuBeta A0,090,80 B0,100,95 C0,141,20 D0,201,50 Wyznacz wskaźniki Treynora jeśli wiadomo, że stopa wolna od ryzyka wynosi 8% a stopa zwrotu z portfela rynkowego 12%.

Interpretacja ujemnych wartości wskaźnika Treynora Ujemne wartości wskaźnika Treynora mogą świadczyć o bardzo złych wynikach zarządzania, albo…..o bardzo dobrych wynikach osiągniętych w trudnych warunkach rynkowych.

Przykład 3 stopa zwrotuBeta E0,060,60 Zarządzający osiągnął wynik gorszy niż stopa zwrotu wolna od ryzyka więc wskaźnik Treynora przyjmuje wartość ujemną.

Przykład 4 Zarządzający zainwestował znaczną część kapitału w metale szlachetne, których ceny charakteryzują się ujemną korelacją z cenami akcji. stopa zwrotuBeta F0,10-0,40 Mimo, iż wskaźnik Treynora jest ujemny to osiągnięty wynik jest zupełnie dobry, a portfel jest szczególnie atrakcyjny w warunkach recesji na rynku akcji.

25 Porównanie wskaźników Współczynnik Treynora wyznacza się w oparciu o współczynnik beta, co oznacza, że uwzględnia się ryzyko systematyczne Współczynnik Sharpe’a ocenia rentowność na podstawie stopy zwrotu oraz dywersyfikacji Dla idealnie zdywersyfikowanego (pozbawionego ryzyka niesystematycznego) portfela obydwa te wskaźniki powinny dawać takie same rankingi portfeli Słabo zdywersyfikowany portfel mógłby mieć wysoki ranking według wskaźnika Treynora, a niski według wskaźnika Sharpe’a

Porównanie wskaźników Wskaźnika Sharpe’a stosuje się do oceny ogólnej działalności funduszu jako całości z uwzględnieniem dywersyfikacji portfela funduszu. Wskaźnik Treynora może służyć do oceny części funduszu (np. konkretnego sektora).

27 Porównanie wskaźników cd. Wadą obu wskaźników jest to, że nie pokazują absolutnych, a jedynie względne, wartości rentowności portfela. Można na ich podstawie stworzyć ranking portfeli, ale nie da się określić dokładnych różnic w ich rentowności.

Alfa Jensena Alfa Jensena opracowana w roku 1968, również na bazie modelu CAPM. Miernik dany jest następującym wzorem:

Interpretacja alfy Jensena Miara Jensena jest różnicą pomiędzy stopą zwrotu osiągniętą przez zarządzającego portfelem a stopą zwrotu z portfela (na linii SML) o takim samym ryzyku systematycznym, utworzonego z portfela rynkowego z instrumentem wolnym od ryzyka. Dla inwestora najlepszy jest portfel o najwyższej alfie Jensena. Miara Jensena nie jest odpowiednia do porównywania różnych portfeli. Największą wartość poznawczą ma ten miernik dla porównania dwóch inwestycji o takich samych lub zbliżonych wartościach bety. Dla celów porównawczych można stosować miernik zmodyfikowany – iloraz alfy Jensena i Bety.

Ilustracja alfy Jensena A’ A B B’ β r C C’

Przykład 5 Odchylenie standardowe stopy zwrotu z portfela P wynosi s = 0,12, współczynnika beta tego portfela wynosi b = 1,1, a wskaźnik Sharpe’a wynosi S = 0,8732. Ile wynosi wskaźnik Treynora dla tego portfela?

Przykład 6 Wskaźnik Jensena dla zarządzanego portfela akcji wynosi 3%. Stopa zwrotu z tego portfela to 18%, a jego współczynnik beta 1,5. Ile wynosi stopa zwrotu z portfela rynkowego jeśli wiadomo, że stopa zwrotu z aktywów wolnych od ryzyka wynosi 6%?

Specyfika funduszy hedgingowych Rozkład stóp zwrotu z funduszy hedgingowych często różni się od rozkładu normalnego, stąd tradycyjne miary ryzyka mogą prezentować fałszywy obraz ryzyka Istotne jest uwzględnienie specyfiki rozkładu stóp zwrotu poprzez zbadanie kurtozy i skośności rozkładu

Skośność rozkładu Skośność (skewness) – miara symetrii rozkładu statystycznego. Rozkład symetryczny ma skośność równą zero. Ujemna wartość skośności wskazuje na ryzyko poniesienia bardzo dużych strat, dodatnia wartość – możliwość wygenerowania bardzo dużych zysków.

Miary asymetrii (skośności) wskaźnik asymetrii (skośności): gdzie: D – dominanta (moda, modalna), - średnia arytmetyczna wartość wskaźnika asymetrii większa od zera informuje o dodatnim (prawostronnym) kierunku asymetrii rozkładu W s równy zero oznacza rozkład symetryczny W s mniejsze od zera wskazuje asymetrię ujemną (lewostronną)

Miary asymetrii (skośności) współczynnik asymetrii (skośności) informuje jaka część odchylenia standardowego stanowi różnica między średnią arytmetyczną a dominantą znak współczynnika określa kierunek a moduł siłę asymetrii A s zawarty w granicach wskazuje na umiarkowaną asymetrię w przypadku asymetrii prawostronnej A s przyjmuje wartości dodatnie, w przypadku asymetrii lewostronnej A s przyjmuje wartości ujemne.

Kurtoza Kurtoza (Kurtosis) – miara prawdopodobieństwa wystąpienia wartości ekstremalnych (pozytywnych i negatywnych) w rozkłądzie. Rozkład normalny ma kurtozę o wartości 3. Wartości kurtozy większe od 3 wskazują na podwyższone prawdopodobieństwo wystąpienia wysokich zysków/strat.

Kurtoza – definicja formalna

Składniki stopy zwrotu funduszy hedge (absolutnej stopy zwrotu) Stefanini (2006) (Investment Strategies of Hedge Funds): - Tradycyjna beta – czynniki ryzyka są związane z rynkiem akcji, czasem trwania obligacji lub spreadem kredytowym, - Alternatywna beta – czynniki ryzyka: płynność i zmienność cen instrumentów finansowych, korelacje między instrumentami, - Strukturalny współczynnik alfa = alfa strategii – czynniki ryzyka: swoboda regulacji prawnych, brak porównania z benchmarkiem, elastyczność polityki inwestycyjnej, - Alfa umiejętności zarządzającego – czynniki ryzyka: zdolności analityczne zarządzającego, zdolności tworzenia nowych rozwiązań inwestycyjnych, umiejętność zarządzania ryzykiem portfela.

Obsunięcie kapitału Obsunięcie kapitału (drawdown) – procentowy spadek wartości inwestycji od szczytu do dołka. „Zwykłe” obsunięcie kapitału (drawdown) – pojedynczy spadek wartości inwestycji od ostatniego szczytu do kolejnego dołka. Największe pojedyncze obsunięcie kapitału (largest individual drawdown) – najdłuższa nieprzerwana seria strat w analizowanym okresie. Maksymalne obsunięcie kapitału (maximum drawdown) – największa łączna strata jaką mógł ponieść inwestor w analizowanym okresie (hipotetyczna inwestycja na szczycie notowań i zamknięcie na dołku).

Maximum drawdown - przykład

Wskaźnik Calmara

Wskaźnik Sterlinga

Tracking error (błąd replikacji) Tracking error (TE) jest wyznaczany jako średnioroczne odchylenie standardowe dodatkowych stóp zwrotu, stanowiących różnicę pomiędzy stopą zwrotu portfela i stopą zwrotu indeksu. Im mniejsza wartość wskaźnika TE tym wyniki inwestycyjne osiągane przez dany portfel są bardziej zbliżone do wyników indeksu.

Kalkulacja TE gdzie: σ Δ – tracking error okresowy P – liczba okresów pomiaru stopy zwrotu w roku

Kalkulacja TE – ciąg dlaszy Tracking error okresowy dla N obserwacji stopy zwrotu: gdzie: Δ t – dodatkowa stopa zwrotu R p – stopa zwrotu z portfela R b – stopa zwrotu z indeksu (benchmarku)

Tracking error – przykład 7 KwartałStopa zwrotu z portfela Stopa zwrotu z indeksu Dodatkowa stopa zwrotu 12,3%2,7%-0,4% 2-3,6%-4,6%1,0% 311,2%10,1%1,1% 41,2%2,2%-1,0% 51,5%0,4%1,1% 63,2%2,8%0,4% 78,9%8,1%0,8% 8-0,8%0,6%-1,4%

Przykład - obliczenia Średnia dodatkowa stopa zwrotu: Tracking error kwartalny: Tracking error roczny:

Ocena efektywności funduszy jako badanie umiejętności managerskich Ponadprzeciętne wyniki funduszy wymagają bardzo dobrego przewidywania zachowań rynku zarówno w wymiarze mikroekonomicznym jak i makroekonomicznym.

Analiza źródeł efektu zarządzania – (Performance atribution analysis) Zarządzający może podnieść stopę zwrotu z portfela w porównaniu z benchmarkiem poprzez: - optymalną alokację = zdolność wyboru klas aktywów dających lepsze stopy zwrotu niż benchmark - optymalną selekcję – zdolność wyboru instrumentów w ramach danej klasy aktywów, generujących stopy zwrotu niż benchmark dla tej klasy

Składniki efektu zarządzania Wartość dodana zarządzania = Efekt alokacji + Efekt selekcji Efekt alokacji Efekt selekcji

Definicje oznaczeń w z równań z poprzedniej planszy: w ai, w pi – udział i-tej klasy aktywów w portfelu zarządzającego (a) i benchmarkowym (p) R ai, R pi – stopa zwrotu z i-tej klasy aktywów w portfelu zarządzającego (a) i benchmarkowym (p) R p – łączna stopa zwrotu z portfela benchmarkowego

Przykład 8 SektorBenchmarkPortfel zarządzającego WagaStopa zwrotuWagaStopa zwrotu Akcje60%8,60%50%9,70% Obligacje30%9,20%38%9,10% Instrumenty rynku pieniężnego 10%5,40%12%5,60% 100%8,46%100%8,98%

Atrybucja efektu zarządzania Efekt alokacji Efekt selekcji

Wpływ charakterystyk funduszy na wyniki zarządzania Rodzaj lokat i wysokość podejmowanego ryzyka, Sposób zarządzania (aktywny – pasywny). Wartość aktywów netto, Wysokość ponoszonych opłat, Wysokość pobieranych opłat, Przepływy kapitału z okresu na okres, Staż pracy zarządzającego funduszem.

Wyniki badań efektywności funduszy Kraje rozwinięte ◦ Przeciętne stopy zwrotu gorsze niż benchmark lub stopy zwrotu losowo konstruowanych portfeli o porównywalnym poziomie ryzyka. ◦ Możliwe osiągnięcie ponadprzeciętnych stóp zwrotu, zwłaszcza przez fundusze o najbardziej agresywnych politykach inwestycyjnych (ale również o najwyższych kosztach). ◦ Brak zdolności makroprzewidywania zarządzających funduszami. Odwrotna zależność pomiędzy kapitalizacją funduszu i agresywnością polityki inwestycyjnej a zdolnością makroprzewidywania.

Wyniki badań efektywności funduszy Polska ◦ Wczesne badania: wyniki podobne do światowych – stopy zwrotu z funduszy gorsze od benchmarków ◦ Sikora (2010 – Materiały i Studia NBP, Zeszyt 248) – badanie funduszy akcyjnych i mieszanych (okres 2003 – 2008). Stopy zwrotu z funduszy lepsze od średnich rynkowych, dla funduszy akcyjnych o połowę wyższe niż dla mieszanych. Odwrotna zależność między kapitalizacją a zdolnością przewidywania trendów rynkowych. Podstawowa strategia inwestycyjna – strategia „buy and hold” wzmocniona szczegółową analizą nabywanych walorów.