Ekonometria stosowana WYKŁAD 4 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.

Slides:



Advertisements
Podobne prezentacje
Proces doboru próby. Badana populacja – (zbiorowość generalna, populacja generalna) ogół rzeczywistych jednostek, o których chcemy uzyskać informacje.
Advertisements

1 TREŚĆ UMOWY O PRACĘ : Umowa o pracę określa strony umowy, rodzaj umowy, datę jej zawarcia oraz warunki pracy i płacy, w szczególności: 1) rodzaj pracy,
Blok I: PODSTAWY TECHNIKI Lekcja 7: Charakterystyka pojęć: energia, praca, moc, sprawność, wydajność maszyn (1 godz.) 1. Energia mechaniczna 2. Praca 3.
Równowaga chemiczna - odwracalność reakcji chemicznych
Ekonometria WYKŁAD 10 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
1 Dr Galina Cariowa. 2 Legenda Iteracyjne układy kombinacyjne Sumatory binarne Sumatory - substraktory binarne Funkcje i układy arytmetyczne Układy mnożące.
Plan Czym się zajmiemy: 1.Bilans przepływów międzygałęziowych 2.Model Leontiefa.
Zajęcia 1-3 Układ okresowy pierwiastków. Co to i po co? Pojęcie masy atomowej, masy cząsteczkowej, masy molowej Proste obliczenia stechiometryczne. Wydajność.
Stężenia Określają wzajemne ilości substancji wymieszanych ze sobą. Gdy substancje tworzą jednolite fazy to nazywa się je roztworami (np. roztwór cukru.
MATLOS „JAK TEORIA MA SIĘ DO PRAKTYKI?”. Cel projektu: Sprawdzamy, jaka jest zależność między prawdopodobieństwem a częstością zdarzenia.
Rozliczanie kosztów działalności pomocniczej
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Metody optymalizacji - Energetyka 2015/2016 Metody programowania liniowego.
Excel 2007 dla średniozaawansowanych zajęcia z dnia
Ekonometria WYKŁAD 7 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
BYĆ PRZEDSIĘBIORCZYM - nauka przez praktykę Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego.
Ekonometria stosowana Slajdy pomocnicze Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Ekonometria stosowana Autokorelacja Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Niepewności pomiarowe. Pomiary fizyczne. Pomiar fizyczny polega na porównywaniu wielkości mierzonej z przyjętym wzorcem, czyli jednostką. Rodzaje pomiarów.
Ćwiczenia Zarządzanie Ryzykiem Renata Karkowska, ćwiczenia „Zarządzanie ryzykiem” 1.
Ekonometria Wykład 1 Uwarunkowania modelowania ekonometrycznego. Uogólniona metoda najmniejszych kwadratów dr hab. Mieczysław Kowerski.
Cel analizy statystycznej. „Człowiek –najlepsza inwestycja”
Przemiany energii w ruchu harmonicznym. Rezonans mechaniczny Wyk. Agata Niezgoda Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Mgr Małgorzata Dziwoki.  Odpowiednie stosowanie przepisów o współwłasności w częściach ułamkowych (art KC)  Wspólność majątku to współwłasność.
 Czasem pracy jest czas, w którym pracownik pozostaje w dyspozycji pracodawcy w zakładzie pracy lub w innym miejscu wyznaczonym do wykonywania pracy.
Ryzyko a stopa zwrotu. Standardowe narzędzia inwestowania Analiza fundamentalna – ocena kondycji i perspektyw rozwoju podmiotu emitującego papiery wartościowe.
Projekt Regulaminu Działania Komitetu Monitorującego Regionalny Program Operacyjny Województwa Pomorskiego na lata
EWALUACJA PROJEKTU WSPÓŁFINANSOWANEGO ZE ŚRODKÓW UNII EUROPEJSKIE J „Wyrównywanie dysproporcji w dostępie do przedszkoli dzieci z terenów wiejskich, w.
Podstawowe pojęcia termodynamiki chemicznej -Układ i otoczenie, składniki otoczenia -Podział układów, fazy układu, parametry stanu układu, funkcja stanu,
Przykład: 1 Pan Roch wpłacił 500 zł do banku, w którym oprocentowanie wkładów wynosiło 12% w skali roku. Pieniądze te przeznaczył dla swego chrześniaka,
Klasyczny model regresji liniowej (KMRL) Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa.
Analiza wariancji (ANOVA) Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie.
EWALUACJA JAKO ISTOTNY ELEMENT PROJEKTÓW SYSTEMOWYCH Sonia Rzeczkowska.
Zmienne losowe Zmienne losowe oznacza się dużymi literami alfabetu łacińskiego, na przykład X, Y, Z. Natomiast wartości jakie one przyjmują odpowiednio.
Ekonometria WYKŁAD 1 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Analiza tendencji centralnej „Człowiek – najlepsza inwestycja”
Równowaga rynkowa w doskonałej konkurencji w krótkim okresie czasu Równowaga rynkowa to jest stan, kiedy przy danej cenie podaż jest równa popytowi. p.
© Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH Prezentacja – 4 Matematyczne opracowywanie.
STATYSTYKA – kurs podstawowy wykład 10 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
W KRAINIE TRAPEZÓW. W "Szkole Myślenia" stawiamy na umiejętność rozumowania, zadawania pytań badawczych, rozwiązywania problemów oraz wykorzystania wiedzy.
Opodatkowanie spółek Podziały Spółek. Podziały spółek Rodzaje podziałów wg KSH Przewidziane są cztery sposoby podziału: 1) podział przez przejęcie, który.
KOSZTY W UJĘCIU ZARZĄDCZYM. POJĘCIE KOSZTU Koszt stanowi wyrażone w pieniądzu celowe zużycie majątku trwałego i obrotowego, usług obcych, nakładów pracy.
Metody Analizy Danych Doświadczalnych Wykład 9 ”Estymacja parametryczna”
BADANIA STATYSTYCZNE. WARUNKI BADANIA STATYSTYCZNEGO musi dotyczyć zbiorowościstatystycznej musi określać prawidłowościcharakteryzujące całą zbiorowość.
Teoria masowej obsługi Michał Suchanek Katedra Ekonomiki i Funkcjonowania Przedsiębiorstw Transportowych.
Optymalna wielkość produkcji przedsiębiorstwa działającego w doskonałej konkurencji (analiza krótkookresowa) Przypomnijmy założenia modelu doskonałej.
Metody sztucznej inteligencji - Technologie rozmyte i neuronowe 2015/2016 Perceptrony proste nieliniowe i wielowarstwowe © Kazimierz Duzinkiewicz, dr hab.
WPŁYW RÓWNOŚCI PŁCI NA JAKOŚĆ ŻYCIA - METODOLOGIA, MODEL ANALITYCZNY I GŁÓWNE WYNIKI Ewa Krzaklewska Piotr Brzyski Uniwersytet Jagielloński.
Zmienna losowa dwuwymiarowa Dwuwymiarowy rozkład empiryczny Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium Analiz Ekonomicznych.
Katarzyna Rychlicka Wielomiany. Katarzyna Rychlicka Wielomiany Przykłady Wykresy funkcji wielomianowych Równania wielomianowe Działania na wielomianach.
POP i SIR POK1 i POK2.
Renata Maciaszczyk Kamila Kutarba. Teoria gier a ekonomia: problem duopolu  Dupol- stan w którym dwaj producenci kontrolują łącznie cały rynek jakiegoś.
Budżetowanie kapitałowe cz. III. NIEPEWNOŚĆ senesu lago NIEPEWNOŚĆ NIEMIERZALNA senesu strice RYZYKO (niepewność mierzalna)
O PARADOKSIE BRAESSA Zbigniew Świtalski Paweł Skałecki Wydział Matematyki, Informatyki i Ekonometrii Uniwersytet Zielonogórski Zakopane 2016.
Międzynarodowe opodatkowanie emerytur – ujęcie modelowe
Test analizy wariancji dla wielu średnich – klasyfikacja pojedyncza
Katedra Międzynarodowych Studiów Porównawczych
terminologia, skale pomiarowe, przykłady
MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH
Oczekiwana przez inwestora stopa dochodu
Podstawy teorii zachowania konsumentów
Ekonometria stosowana
Własności statystyczne regresji liniowej
Weryfikacja hipotez statystycznych
Zasady funkcjonowania rynku
Porównywanie średnich prób o rozkładach normalnych (testy t-studenta)
REGRESJA WIELORAKA.
ROZKŁADY STATYSTYCZNE ZMIENNYCH MIERZALNYCH
EKONOMETRIA I PROGNOZOWANIE PROCESÓW EKONOMOICZNYCH
Zapis prezentacji:

Ekonometria stosowana WYKŁAD 4 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych

Modele zmiennej jakościowej ►Zmienne jakościowe stosowane są do kwantyfikacji cech jakościowych np. płci, przedziału dochodów, jakości produktu itp. ►Bardzo często zmienne te przyjmują postać binarną (zerojedynkową) np. 1- kobieta, 0- mężczyzna ►Modele zmiennej jakościowej to takie, w których zmienną objaśnianą w modelu jest zmienna jakościowa zazwyczaj zero- jedynkowa. ►Zmienne objaśniające mogą być zarówno zmiennymi jakościowymi, jak i ilościowymi ►Postać funkcyjna zależności może być różna, w szczególności może mieć charakter nieliniowy

Liniowy Model Prawdopodobieństwa (1) ►LMP w postaci teoretycznej zapisujemy jako gdzie y(i) jest zmienną zero-jedynkową ►Wartości empiryczne zmiennej objaśnianej są równe 0 lub 1, jednak wartości teoretyczne (wynikające z modelu) nie mają takich ograniczeń ►Jaka jest interpretacja wartości teoretycznych y(i)? Co oznacza wartość 0.3, jeśli zmienna objaśniana przyjmuje wartość 1, gdy dana osoba jest bezrobotna, a 0 gdy pracująca? ►Należy zauważyć, że: natomiast z postaci funkcyjnej modelu wynika, że

►Z powyższego wynika że: Liniowy Model Prawdopodobieństwa (2) co oznacza, że wartość teoretyczna zmiennej objaśnianej może być interpretowana jako prawdopodobieństwo tego, że zmienna y(i) przyjmie wartość 1 ►Interpretacja parametrów strukturalnych LMP odnosi się do zmian prawdopodobieństwa w reakcji na jednostkową zmianę wartości zmiennej objaśniającej przy innych czynnikach niezmienionych.

►Przykład: oszacowano LMP postaci: Liniowy Model Prawdopodobieństwa (3) gdzie y(i) przyjmuje wartość 1, gdy dane gospodarstwo domowe posiada mieszkanie na własność i 0 w pozostałych przypadkach, zaś zmienna x określa miesięczny dochód rozporządzalny gospodarstwa domowego w tys. zł. ►Przy dochodzie rozporządzalnym równym 10 tys. zł prawdopodobieństwo tego, że dane gospodarstwo domowe posiada mieszkanie na własność wynosi 0.5, zaś wzrost dochodu o 1 tys. zł prowadzi do wzrostu prawdopodobieństwa posiadania mieszkania o 0.03.

Główne ograniczenia LMP: Liniowy Model Prawdopodobieństwa (4) ►Ograniczenie nr 1: ►składniki losowe w LMP nie mają rozkładu normalnego; ►analizując własności składnika losowego na podstawie poznanych wcześniej testów, dochodzimy do wniosku, że charakteryzuje się on heteroskedastycznością gdyż zachodzi: ►utrudniona jest więc ocena istotności dokonywana na podstawie standardowych testów ►Ograniczenie nr 2: ►teoretyczne wartości zmiennej objaśnianej mogą być mniejsze od 0 i większe od 1 ►uniemożliwia to ich interpretację w kategoriach prawdopodobieństwa

Liniowy Model Prawdopodobieństwa (5)

►Metoda estymacji: Metoda Największej Wiarygodności ►Metoda ta umożliwia dobranie parametrów rozkładu tak, aby zmaksymalizować prawdopodobieństwo zaobserwowania bieżącej próby Estymacja modelu logitowego i probitowego ►W zależności od modelu (logitowy vs probitowy) funkcja F przybiera postać lub ►W praktyce stosuje się postać zlogarytmowaną:

Model logitowy (1) ►Model logitowy bazuje na funkcji logistycznej określonej wzorem ►Przykład funkcji logistycznej:

►Funkcję logistyczną można sformułować w innej wersji, w której przyjmuje wartość nasycenia równą 1, stąd nadaje się do modelowania prawdopodobieństwa: Model logitowy (2) ►Model prawdopodobieństwa ma więc postać: gdzie: ►Z powyższego wynika, że

►Logit to logarytm ilorazu szans, czyli relacji prawdopodobieństwa zdarzenia, dla którego y przyjmuje wartość 1 i zdarzenia przeciwnego – relacja z zakładów bukmacherskich ►Przykład: przy strzelaniu do tarczy i prawdopodobieństwie trafienia w jej środek równym 0.33 iloraz szans wynosi ½, czyli szansa na trafienie vs. szansa na nietrafienie mają się jak 1 do 2. Model logitowy (3) ►Iloraz szans ma postać zaś logit:

►Z powyższego wynika interpretacja parametrów strukturalnych, która jest inna niż w LMP. Model logitowy (4) ►Z powyższego wynika, że zmiana wartości zmiennej o jednostkę prowadzi do wzrostu ilorazu szans o ►Wpływ zmian wartości zmiennej na wartość prawdopodobieństwa przyjęcia przez zmienną objaśnianą wartości 1 definiujemy jako efekt krańcowy i wyznaczamy ze wzoru

►Uwaga do interpretacji efektu krańcowego: wartość efektu krańcowego jest funkcją wartości pozostałych zmiennych objaśniających modelu. Oznacza to, że efekt krańcowy jest nieliniowy: ►wpływ na prawdopodobieństwo tej samej zmiany jednostkowej zmiennej objaśniającej prowadzi do innej zmiany prawdopodobieństwa w zależności od pozostałych wartości zmiennych objaśniających ►wartość efektu krańcowego podaje się dla zadanej wartości wszystkich zmiennych objaśniających modelu. Model logitowy (5) ►W pakietach ekonometrycznych podaje się efekty krańcowe dla średniej wartości prawdopodobieństwa.

►Standardowe miary dopasowania (stosowane w przypadku zwykłego modelu liniowego) w modelu logitowym nie znajdują zastosowania. Model logitowy (6) ►W modelu logitowym stosuje się inne metody estymacji, gdyż jest to model nieliniowy. Zazwyczaj jest to Metoda Największej Wiarygodności, gdzie maksymalizuje się funkcję wiarygodności postaci ►Na podstawie tej metody wyznacza się (wyliczany standardowo w większości pakietów) współczynnik pseudo-R^2 McFadena : gdzie L MP to wartość funkcji wiarygodności dla pełnego modelu (zawierającego wszystkie zmienne objaśniające) zaś L MZ to wartość funkcji wiarygodności dla modelu zredukowanego do wyrazu wolnego

►Druga standardowa miara dopasowania bazuje na tzw. tablicy trafności prognoz ex post konstruowanej według następujacej procedury: Model logitowy (6) ►po estymacji parametrów modelu dokonuje się oszacowania wartości teoretycznych prawdopodobieństw według wzoru: ►dla tak wyznaczonych prawdopodobieństw wyznaczamy wartości teoretyczne zmiennej objaśnianej według ►(1) jeśli próba jest zbilansowana tzn. liczba 0 i 1 dla zmiennej objaśnianej jest mniej więcej równa ►(2) jeśli próba jest niezbilansowana, przy czym jest równa udziałowi wartości 1 w wartościach Y(i) (tzw. metoda optymalnej wartości granicznej Cramera)

►w kolejnym kroku tworzy się tablicę postaci: Model logitowy (7) ►wyznaczamy wartość tzw. R^2 zliczeniowego postaci EmpiryczneTeoretyczneRazem Y=1Y=0 Y=1N11N10N1. Y=0N01N00N0. RazemN.1N.0N

►W modelu probitowym wartość prawdopodobieństwa określona jest dystrybuantą standardowego rozkładu normalnego tzn. Model probitowy gdzie jest funkcją gęstości standardowego rozkładu normalnego ►Efekty krańcowe w tym modelu mają postać gdzie: ►Relacja między parametrami modelu logitowego i probitowego jest dana wzorem

►W wielu sytuacjach jakościowa zmienna objaśniana ma postać dyskretną, lecz przyjmuje więcej niż dwie wartości np. ►zatrudnienie: brak, część etatu, cały etat ►wybór środka transportu: tramwaj, autobus, samochód Uporządkowany model zmiennej jakościowej (1) ►W takim przypadku modele binarne zastępowane są modelami wielomianowymi (multiresponse model). ►W zależności od rodzaju zmiennej objaśnianej rozróżniamy modele ►uporządkowane (1 przykład), w których zmienna objaśniana zawiera ustrukturyzowane logicznie odpowiedzi; w takim modelu wyniki estymacji modelu są wrażliwe na zmianę uporządkowania ►nieuporządkowane (2 przykład) – odwrotnie; w wielu przypadkach bazują na założeniu, że alternatywne wartości zmiennej objaśnianej mają przypisane losowe użyteczności, z których wybierana jest najwyższa

►Dla postać modelu uporządkowanego: Uporządkowany model zmiennej jakościowej (2) ►Wartości graniczne dla poszczególnych przedziałów nie są znane, przyjmuje się natomiast ►Prawdopodobieństwo, że zmienna y przyjęła wartość j jest równe prawdopodobieństwu, że zmienna y* znalazła się między wartościami granicznymi i. ►Zakładając, że składnik losowy ma rozkład normalny otrzymujemy uporządkowany model probitowy, w przypadku rozkładu logistycznego – uporządkowany model logitowy.

►Przykład: badanie rynku pracy w województwie ze zmienną jakościową o wartościach: ►1- brak zatrudnienia ►2- zatrudnienie na część etatu ►3 – zatrudnienie na pełny etat Uporządkowany model zmiennej jakościowej (3) ►Dla wybranego zestawu zmiennych objaśniających x zakładamy, że istnieje określona wartość indeksu wyznaczona przez, taka, że wartości powyżej tego indeksu odpowiadają przeciętnie wyższym wartościom zmiennej y*. ►W takim przypadku model ma postać:

►Prawdopodobieństwa przyjęcia przez zmienną y poszczególnych wartości są równe (dla modelu probitowego) Uporządkowany model zmiennej jakościowej (4) ►Wartość parametru granicznego jest estymowana łącznie z parametrami strukturalnymi ►Interpretacja znaku parametru strukturalnego w takim modelu jest podobna jak w przypadku modelu binarnego ►O ile jednak przy dodatnim parametrze strukturalnym wzrost wartości danej zmiennej objaśnianej podwyższa prawdopodobieństwo y(i)=3 i obniża prawdopodobieństwo y(i)=1, o tyle wpływ na prawdopodobieństwo y(i)=2 jest niejednoznaczny!

►Standardowo w uporządkowanym modelu probitowym i logitowym nakłada się ograniczenia pozwalające na normalizację wyników. Restrykcje te dotyczą zazwyczaj wariancji składnika losowego (wartość 1 ) oraz wyrazu wolnego (wartość 0). ►W modelu probitowymbez nałożonych restrykcji normalizacyjnych mamy: Uporządkowany model zmiennej jakościowej (5) ►Prawdopodobieństwa przyjęcia przez zmienną y wartości 1 jest więc równe ►Oznacza to, że zmiana parametrów nie prowadzi do zmiany prawdopodobieństw, jeśli relacja parametrów są stałe

Dziękuję za uwagę