Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Metody Symulacyjne w Telekomunikacji (MEST) Wykład 6/7: Analiza statystyczna wyników symulacyjnych Dr inż. Halina Tarasiuk p.

Podobne prezentacje


Prezentacja na temat: "Metody Symulacyjne w Telekomunikacji (MEST) Wykład 6/7: Analiza statystyczna wyników symulacyjnych Dr inż. Halina Tarasiuk p."— Zapis prezentacji:

1 Metody Symulacyjne w Telekomunikacji (MEST) Wykład 6/7: Analiza statystyczna wyników symulacyjnych Dr inż. Halina Tarasiuk p. 337, tnt.tele.pw.edu.pl

2 Zagadnienia Podstawowe pojęcia Analiza wariancji Przedziały ufności Praktyczne zastosowanie rozkładu t-Studenta Rodzaje symulacji a analiza wyników

3 Zagadnienia Podstawowe pojęcia Analiza wariancji Przedziały ufności Praktyczne zastosowanie rozkładu t-Studenta Rodzaje symulacji a analiza wyników

4 Podstawowe pojęcia Rozważmy n zmiennych losowych –X 1, X 2,..., X n Cel –Dyskusja pewnych charakterystyk dla zmiennej losowej X i –Pewne pomiary zależności, które mogą wystąpić między dwoma zmiennymi losowymi X i i X j

5 Podstawowe pojęcia Wartość średnia/wartość oczekiwana Mediana Wariancja Odchylenie standardowe Kowariancja

6 Wartość średnia/wartość oczekiwana Wartość średnią lub oczekiwaną zmiennej losowej X i (gdzie i=1, 2,..., n) będziemy oznaczać jako i lub E(X i )

7 Wartość średnia/wartość oczekiwana Własności –Przyjmijmy, że c lub c i oznaczają stałą (liczbę rzeczywistą) –(1) –(2) nawet jeśli X i są zależne

8 Wartość średnia/wartość oczekiwana Przykład –Załóżmy, że zmienna losowa dyskretna X przyjmuje wartości 1, 2, 3, 4 odpowiednio z prawdopodobieństwem 1/6, 1/3, 1/3, 1/6. Wówczas wartość średnia wynosi: ? –Załóżmy, że zmienna losowa jest opisana rozkładem równomiernym na przedziale [0,1]. Wówczas wartość średnia wynosi: ?

9 Wartość średnia/wartość oczekiwana Przykład –Załóżmy, że zmienna losowa dyskretna X przyjmuje wartości 1, 2, 3, 4 odpowiednio z prawdopodobieństwem 1/6, 1/3, 1/3, 1/6. Wówczas wartość średnia wynosi: –Załóżmy, że zmienna losowa jest opisana rozkładem równomiernym na przedziale [0,1]. Wówczas wartość średnia wynosi:

10 Mediana Mediana (zwana też wartością środkową lub drugim kwantylem) to w statystyce wartość cechy w szeregu uporządkowanym, powyżej i poniżej której znajduje się jednakowa liczba obserwacji. Mediana jest kwantylem rzędu 1/2. Aby obliczyć medianę ze zbioru n obserwacji, sortujemy je w kolejności od najmniejszej do największej i numerujemy od 1 do n. Następnie, jeśli n jest nieparzyste, medianą jest wartość obserwacji w środku (czyli obserwacji numer (n+1)/2). Jeśli natomiast n jest parzyste, wynikiem jest średnia arytmetyczna między dwiema środkowymi obserwacjami, czyli obserwacją numer n/2 i obserwacją numer (n/2)+1.

11 Mediana Mediana x 0.5 zmiennej losowej X i jest zdefiniowana jako najmniejsza wartość x, taka że dla zmiennej losowej ciągłej f(x) Obszar=0.5 x x 0.5

12 Mediana Przykład –Rozważmy zmienną losową X, która przyjmuje wartości 1, 2, 3, 4, i 5 z prawdopodobieństwem 0.2. Wartość średnia i mediana wynoszą ? –Rozważmy zmienną losową Y, która przyjmuje wartości 1, 2, 3, 4 i 100 z prawdopodobieństwem 0.2. Wartość średnia i mediana wynoszą odpowiednio ? i ?

13 Mediana Przykład –Rozważmy zmienną losową X, która przyjmuje wartości 1, 2, 3, 4, i 5 z prawdopodobieństwem 0.2. Wartość średnia i mediana wynoszą 3. –Rozważmy zmienną losową Y, która przyjmuje wartości 1, 2, 3, 4 i 100 z prawdopodobieństwem 0.2. Wartość średnia i mediana wynoszą odpowiednio 22 i 3. –W rozważanych przypadkach mediana nie jest wrażliwa na zmianę rozkładu

14 Wariancja Wariancja zmiennej losowej X i o wartości oczekiwanej zdefiniowana jest następująco Wariancję oznaczamy również jako Var(X i )

15 Wariancja Wariancja jest miarą zmienności/rozrzutu zmiennej losowej od wartości średniej Im wariancja jest większa, tym zmienna losowa przyjmuje wartości bardziej oddalone od wartości średniej Funkcja gęstości dla zmiennych losowych ciągłych o dużej i małej wariancji

16 Wariancja Przykłady –Załóżmy, że zmienna losowa dyskretna X przyjmuje wartości 1, 2, 3, 4 odpowiednio z prawdopodobieństwem 1/6, 1/3, 1/3, 1/6. Wówczas wariancja wynosi: E(X 2 ) = ? Var(X) = ? –Załóżmy, że zmienna losowa jest opisana rozkładem równomiernym na przedziale [0,1]. Wówczas wariancja wynosi: E(X 2 ) = ? Var(X) = ?

17 Wariancja Przykłady –Załóżmy, że zmienna losowa dyskretna X przyjmuje wartości 1, 2, 3, 4 odpowiednio z prawdopodobieństwem 1/6, 1/3, 1/3, 1/6. Wówczas wariancja wynosi: E(X 2 )=43/6 Var(X)=11/12

18 Wariancja Przykłady –Załóżmy, że zmienna losowa jest opisana rozkładem równomiernym na przedziale [0,1]. Wówczas wariancja wynosi: E(X 2 )=1/3 Var(X)=1/12

19 Wariancja Własności –(1) –(2) –(3)

20 Odchylenie standardowe Odchylenie standardowe zmiennej losowej X i definiujemy jako Własności –Jest wyrażane w tych samych jednostkach, co wartości cechy

21 Kowariancja Zależność liniowa między zmiennymi losowymi Kowariancja między zmienną losową X i i X j, która jest miarą ich zależności liniowej jest oznaczana jako C ij lub Cov(X i, X j ) i jest zdefiniowana następująco

22 Kowariancja Jeśli C ij =0, wówczas zmienne losowe są nie skorelowane Jeśli C ij >0, wówczas zmienne losowe są skorelowane dodatnio Jeśli C ij <0, wówczas zmienne losowe są skorelowane ujemnie

23 Zagadnienia Podstawowe pojęcia Analiza wariancji Przedziały ufności Praktyczne zastosowanie rozkładu t-Studenta Rodzaje symulacji a analiza wyników

24 Zagadnienia Podstawowe pojęcia Analiza wariancji Przedziały ufności Praktyczne zastosowanie rozkładu t-Studenta Rodzaje symulacji a analiza wyników

25 Analiza wariancji Wyniki symulacji a procesy stochastyczne Estymacja wartości średniej, wariancji i korelacje

26 Wyniki symulacji a procesy stochastyczne (1) Ponieważ większość modeli symulacyjnych używa zmiennych losowych jako parametrów wejściowych, wyniki symulacyjne są również losowe Dlatego, należy bardzo ostrożnie wnioskować na podstawie otrzymanych wyników o ich prawdziwości

27 Wyniki symulacji a procesy stochastyczne (2) Proces stochastyczny jest zbiorem podobnych zmiennych losowych uporządkowanych w czasie, które są zdefiniowane we wspólnej przestrzeni próby Zbiór wszystkich możliwych wartości, które te zmienne losowe mogą przyjąć określamy jako przestrzeń stanu W przypadku zbioru X 1, X 2,... Mówimy o dyskretnym w czasie procesie stochastycznym W przypadku, gdy {X(t), t 0}, wówczas mamy ciągły w czasie proces stochastyczny

28 Wyniki symulacji a procesy stochastyczne (3) Aby wnioskować o danym procesie stochastycznym na podstawie otrzymanych wyników symulacji, często musimy przyjąć pewne założenia, które niekoniecznie muszą być do końca prawdziwe (jednak, często bez takich założeń, analiza statystyczna wyników symulacji byłaby niemożliwa) Przykładem, jest założenie, że proces stochastyczny jest procesem stacjonarnym z punktu widzenia kowariancji

29 Wyniki symulacji a procesy stochastyczne (4) Mówimy, że dyskretny w czasie proces stochastyczny X 1, X 2,... Ma ustaloną kowariancję, jeśli – i = dla i=1, 2,... i - < < – i = dla i=1, 2,... i 2 < –oraz C i, j+1 =Cov(X i, X i+j ) dla j=1, 2,... Czyli dla powyższego procesu wartość średnia i wariancja są ustalone w czasie, zaś kowariancja między X i i X j+i zależy tylko od j, nie zaś od rzeczywistego czasu i lub j+i

30 Wyniki symulacji a procesy stochastyczne (5) Dla procesu stochastycznego o ustalonej kowariancji, kowariancję i korelację między X i i X i+j oznaczamy odpowiednio przez C j oraz j, gdzie

31 Wyniki symulacji a procesy stochastyczne (6) Jeśli X 1, X 2,... stanowią proces stochastyczny zaczynający się w zerowej chwili czasowej symulacji jest bardzo prawdopodobne, że proces nie jest procesem o ustalonej kowariancji Jednakże dla pewnych symulacji proces X k+1, X k+2 będzie w przybliżeniu procesem o ustalonej kowariancji jeśli k jest wystarczająco duże, gdzie k jest długością tzw. czasu rozbiegu

32 Estymacja wartości średniej, wariancji i korelacje (1) Załóżmy, że X 1, X 2,..., X n są zmiennymi losowymi niezależnymi o takim samym rozkładzie (obserwacjami) o średniej dla skończonej populacji i o wariancji 2 dla skończonej populacji oraz, że naszym głównym celem jest oszacowanie, zaś oszacowanie 2 jest kolejnym celem.

33 Estymacja wartości średniej, wariancji i korelacje (2) Wówczas wartość średnia dla próby jest tzw. estymatorem nieobciążonym (punktowym) wartości, czyli Intuicyjnie, jest nieobciążonym estymatorem średniej wówczas, gdy wykonamy bardzo dużą liczbę niezależnych eksperymentów, z których każdy da wynik Wówczas średnia z otrzymanych powinna wynieść

34 Estymacja wartości średniej, wariancji i korelacje (3) Podobnie wariancja próby jest nieobciążonym estymatorem 2, dopóki E[S 2 (n)]= 2

35 Estymacja wartości średniej, wariancji i korelacje (4) Problem z użyciem jako estymatora bez żadnej dodatkowej informacji polega na tym, że nie ma sposobu na określenie jak bardzo jest zbliżone do Ponieważ jest zmienną losową o wariancji Dlatego typowym podejściem dla udowodnienia dokładności estymatora wobec jest zastosowanie tzw. przedziałów ufności

36 Estymacja wartości średniej, wariancji i korelacje (5) Jednakże pierwszym krokiem do stworzenia przedziałów ufności jest estymacja wariancji wartości średniej. Ponieważ

37 Estymacja wartości średniej, wariancji i korelacje (6) Ogólnie im większy rozmiar próby, n, tym bliższym oszacowaniem będzie Ponadto nieobciążony estymator wariancji jest oszacowywany przez zastąpienie 2 przez S 2 (n)

38 Estymacja wartości średniej, wariancji i korelacje (7) Ostatecznie Należy zauważyć, że powyższe wyrażenie ma w mianowniku n i n-1 ze względu na X i jak i

39 Zagadnienia Podstawowe pojęcia Analiza wariancji Przedziały ufności Praktyczne zastosowanie rozkładu t-Studenta Rodzaje symulacji a analiza wyników

40 Przedziały ufności (1) Przedziały ufności dla –Załóżmy, że X 1, X 2,..., X n są zmiennymi losowymi niezależnymi o takim samym rozkładzie (obserwacjami) o skończonej średniej i o skończonej wariancji 2 oraz, że 2 >0

41 Przedziały ufności (2) Graniczne twierdzenie centralne –Niech Z n będzie zmienną losową –i niech F n (z) będzie dystrybuantą zmiennej losowej Z n dla próby o rozmiarze n

42 Przedziały ufności (3) Graniczne twierdzenie centralne –jeśli n jest wystarczająco duże wówczas zmienna losowa Z n będzie miała rozkład zbliżony do rozkładu normalnego –Na podstawie teorii możemy przyjąć, że zmienna losowa ma w przybliżeniu rozkład normalny z wartością średnią i wariancją 2 /n

43 Przedziały ufności (4) Graniczne twierdzenie centralne –Trudność w zastosowaniu tej teorii polega na tym, iż w praktyce wariancja 2 jest nieznana. Jednak dla dużego n 2 możemy zastąpić przez wariancję próbkową w wyrażeniu na Z n –Po tych zmianach teoria mówi, że dla wystarczająco dużego n, zmienna losowa t n –ma rozkład zbliżony do rozkładu normalnego

44 Przedziały ufności (5) Dla dużego n gdzie 0< <1

45 Przedziały ufności (6) Dlatego też dla wystarczająco dużego n przybliżony przedział ufności na poziomie ufności 100(1- ) procent dla wynosi

46 Zagadnienia Podstawowe pojęcia Analiza wariancji Przedziały ufności Praktyczne zastosowanie rozkładu t-Studenta Rodzaje symulacji a analiza wyników

47 Praktyczne zastosowanie rozkładu t-Studenta (1) W praktyce trudno jest określić, co oznacza wystarczająco duża liczba prób n Dlatego dla oszacowania przedziałów ufności stosuje się rozkład t-Studenta z n-1 stopniami swobody

48 Praktyczne zastosowanie rozkładu t-Studenta (2) Jeśli X i są zmiennymi losowymi o rozkładzie normalnym, zmienna losowa ma rozkład t z n-1 stopniami swobody, wówczas dokładny przedział ufności na poziomie 100(1- ) dla wynosi

49 Praktyczne zastosowanie rozkładu t- Studenta (3) - przykład Dla 10 prób należy wyznaczyć wartości liczbowe końcowe przedziału ufności dla wartości średniej przyjmując poziom ufności 1- =0.95. Wartości zmiennej losowej wynoszą odpowiednio:

50 Zagadnienia Podstawowe pojęcia Analiza wariancji Przedziały ufności Praktyczne zastosowanie rozkładu t- Studenta Rodzaje symulacji a analiza wyników

51 Symulacja przerywana Parametry ustalone Symulacja nieprzerywalna Parametry dla ustalonego cyklu Inne parametry

52 Rodzaje symulacji a analiza wyników Symulacja przerywana –W symulacji tej zdefiniowane jest pewne naturalne zdarzenie E, które określa długość każdej symulacji (powtórzenia)

53 Symulacja przerywana Analiza statystyczna –Założenia Przeprowadzamy n niezależnych przerywanych symulacji Każde powtórzenie jest przerywane przez zdarzenie E i rozpoczyna się z tymi samymi warunkami początkowymi. Niezależność powtórzeń jest osiągana przez użycie innych liczb losowych dla każdego powtórzenia Dla uproszczenia przyjmijmy, że realizujemy pomiar jednej metryki Niech X j będzie zmienną losową zdefiniowaną dla j-tego powtórzenia, j=1, 2,..., n. Przyjmuje się, że X j są porównywalne dla różnych powtórzeń Wówczas X j są zmiennymi losowymi IID (independent and identicaly distributed)

54 Symulacja przerywana Estymacja wartości średniej –Odbywa się na podstawie rozkładu t-Studenta


Pobierz ppt "Metody Symulacyjne w Telekomunikacji (MEST) Wykład 6/7: Analiza statystyczna wyników symulacyjnych Dr inż. Halina Tarasiuk p."

Podobne prezentacje


Reklamy Google