Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Instrumenty o charakterze własnościowym Akcje. Zagadnienia Wycena akcji Wycena akcji Modele zmienności akcji Modele zmienności akcji Podstawowe parametry.

Podobne prezentacje


Prezentacja na temat: "Instrumenty o charakterze własnościowym Akcje. Zagadnienia Wycena akcji Wycena akcji Modele zmienności akcji Modele zmienności akcji Podstawowe parametry."— Zapis prezentacji:

1 Instrumenty o charakterze własnościowym Akcje

2 Zagadnienia Wycena akcji Wycena akcji Modele zmienności akcji Modele zmienności akcji Podstawowe parametry akcji Podstawowe parametry akcji Miary ryzyka inwestowania w akcje Miary ryzyka inwestowania w akcje Pojęcie portfela akcji Pojęcie portfela akcji Parametry portfela akcji Parametry portfela akcji Portfel akcji z możliwością krótkiej sprzedaży Portfel akcji z możliwością krótkiej sprzedaży Zagadnienia optymalizacyjne portfela akcji Zagadnienia optymalizacyjne portfela akcji Charakterystyka portfela mieszanego (akcji oraz aktywów pozbawionych ryzyka) Charakterystyka portfela mieszanego (akcji oraz aktywów pozbawionych ryzyka)

3 Instrumenty o charakterze własnościowym (udziału w majątku) akcje akcje prawa do akcji prawa do akcji certyfikaty inwestycyjne certyfikaty inwestycyjne świadectwa udziałowe świadectwa udziałowe

4 Instrumenty o charakterze własnościowym Akcje - najważniejszy element rynku kapitałowego. Akcja jest papierem wartościowym potwierdzającym udział w kapitale akcyjnym spółki, stanowiącym jednocześnie uosobienie praw i obowiązków jej posiadacza - akcjonariusza.

5 Wycena akcji - Ustalenie sprawiedliwej wartości, która może być ceną kupna i sprzedaży dla uczestników rynku, dysponujących pełną informacją, w warunkach rynku zrównoważonego, bez możliwości arbitrażu

6 Wycena akcji Modele zdyskontowanych przepływów pieniężnych Modele zdyskontowanych przepływów pieniężnych Analiza podstawowych wskaźników (EPS, BV) Analiza podstawowych wskaźników (EPS, BV) Wycena metodami analizy fundamentalnej Wycena metodami analizy fundamentalnej Analiza regresji wieloczynnikowej Analiza regresji wieloczynnikowej

7 Twórca metody DCF 1938 – John B. Williams The theory of investment value 1938 – John B. Williams The theory of investment value Metoda zdyskontowanych przepływów pieniężnych w wycenie akcji Metoda zdyskontowanych przepływów pieniężnych w wycenie akcji

8 Określenie wartości akcji zwykłych Punktem wyjścia jest definicja wartości papieru wartościowego, jako sumy zdyskontowanych na moment bieżący wpływów uzyskanych z tytułu posiadania papieru. Elementami dyskusyjnymi są długość okresu posiadania papieru wartościowego (na ogół nieznany w chwili wyceny) stopa procentowa użyta do dyskontowania. Źródła zysku posiadacza akcji: dywidenda wzrost kursu akcji

9 Stopa procentowa dyskontująca przyszłe wpływy tzw. wymagana stopa zwrotu, użyta do dyskontowania powinna uwzględniać stopę procentowa wolną od ryzyka pozostałe składniki kosztu pozyskiwania kapitału spodziewaną stopę inflacji premię za ryzyko

10 Wycena papieru wartościowego Papier wartościowy przynoszący regularne roczne wpływy w wysokości C i wyceniamy za pomocą wzoru (19) r - roczna stopa dyskontowa, będąca jednocześnie przeciętną roczną wymaganą stopą zysku z całej inwestycji

11 Sprzedaż akcji po n latach, uwzględnienie dywidendy

12 Model zdyskontowanych dywidend Inwestor nie sprzedaje akcji, nie uzyskuje kwoty ze sprzedaży. Wtedy O ile taka granica istnieje.

13 Model stałej wartości dywidendy Jeżeli dywidenda jest stała: dla każdego i, D i =D, to wartość akcji wynosi

14 Model stałego wzrostu dywidendy (Gordona - Shapiro)

15 Model dwóch faz Zakładamy, że przez pierwsze n- lat dywidenda rośnie w tempie g 1, zaś później rośnie w tempie g 2. (0 < g 2 < g 1 < r )

16 Szacowanie ceny akcji na podstawie zysków rocznych EPS (earnings per share) = zysk roczny / liczba akcji Współczynnik P / EPS, gdzie P jest aktualną ceną akcji, znany pod nazwa cena do zysku (C/Z) jest jednym z najważniejszych wskaźników ceny akcji. Wskaźnik ten na ustabilizowanym rynku zawiera się w pewnym przedziale typowym dla giełdy, sektora spółki, wielkości kapitalizacji itp. Akcje spółki mogą być więc szacowane przez wartość tego współczynnika oraz EPS. Jeżeli współczynnik ceny do zysku dla podobnych spółek waha się w przedziale to wartość akcji tej spółki spełnia nierówności: a EPS < P < b EPS.

17 Model zdyskontowanych przepływów a wskaźnik cena do zysku Model zdyskontowanych dywidend wycenia wartość akcji z punktu widzenia akcjonariusza otrzymującego dywidendę. Wycena akcji może być dokonana z punktu widzenia właściciela spółki. Wtedy roczne dywidendy zostają zastąpione rocznymi przepływami gotówki. Jeżeli przepływy są dodatnie możemy mówić o rocznych kwotach zysku. Jeżeli przyjmiemy modelowo, że te kwoty rosną w tempie rocznego wzrostu równym g, to wzór (27) z modelu stałego wzrostu dywidendy może posłużyć do wyceny akcji z punktu widzenia zdolności generowania zysku, gdzie D 1 oznacza zysk przypadający na jedną akcję w pierwszym roku.

18 Model zdyskontowanych przepływów a wskaźnik cena do zysku

19 Wycena metodami analizy fundamentalnej - wewnętrzna wartość akcji Analiza obecnej i prognozowanej sytuacji makroekonomicznej kraju i regionu Prognozy dla branży Prognozy dla spółki Analiza obecnej działalności spółki: przepływów finansowych, zadłużenia, wykorzystania majątku trwałego, środków pieniężnych Ocena jakości zarządzania spółką, zasobów ludzkich, technologii, innowacyjności (tzw. wartości dodanej spółki) Analiza otoczenia konkurencyjnego Mocne i słabe strony spółki

20 Wycena metodami analizy regresji wieloczynnikowej Dobór tzw. zmiennych wyjaśniających – najważniejszych zmiennych mierzalnych kształtujących ceny akcji Oznaczamy je literami X,Y,U,V,W f- czynnik losowy o wartości oczekiwanej zero P = aX + bY +cU + dV + eW + f a,b,c,d,e – wagi – dobierane eksperymentalnie

21 Krótka sprzedaż Możliwość krótkiej sprzedaży, to możliwość sprzedaży akcji pożyczonych od odpowiedniej instytucji, np. biura maklerskiego. W ustalonym momencie w przyszłości akcje należy zwrócić. Zatem korzystający z takiej możliwości musi odkupić akcje w tej samej liczbie i przekazać biuru maklerskiemu. Krótkiej sprzedaży dokonuje się w przypadku przewidywania spadku cen akcji. Inwestor zyskuje na spadku cen akcji Zysk inwestora jest różnicą miedzy wartością sprzedanych na początku akcji a kwotą za którą musi później odkupić akcje

22 Krótka sprzedaż. Cena akcji w momencie pożyczenia zł. Liczba pożyczonych akcji - 100

23 Portfel dwóch akcji W - wartość portfela W = a P 1 + b P 2 P 1 - cena akcji A, P 2 – cena akcji B a- liczba akcji A, b - liczba akcji B a P 1 - wartość akcji A w portfelu b P 2 - wartość akcji B w portfelu a P 1 / W – udział akcji A w portfelu, ozn. α b P 2 / W – udział akcji B w portfelu, ozn. β α + β = 1, α, β – nieujemne

24 Stopa zwrotu z portfela dwóch akcji przy braku krótkiej sprzedaży i dywidendy R A – okresowa stopa zwrotu z akcji A R B – okresowa stopa zwrotu z akcji B Stwierdzenie. Jeżeli α, β oznaczają udziały akcji A i B w portfelu, to okresowa stopa zwrotu z portfela - R P jest równa R P = α R A + β R B Dowód: (przy oznaczeniach z poprzedniego slajdu) P 1 (1+ R A ), P 2 (1+ R B ), - ceny końcowe akcji A, B Przyrost wartości portfela w okresie bazowym: [a P 1 (1+ R A )+ b P 2 (1+ R B )] – (a P 1 + b P 2 )= a P 1 R A +b P 2 R B stopa zwrotu R P = (a P 1 R A +b P 2 R B ) / W = (a P 1 / W) R A + (b P 2 / W) R B = α R A + β R B

25 Portfel z możliwością krótkiej sprzedaży Przy przyjętych oznaczeniach, wartość portfela dwóch akcji W = a P 1 + b P 2 lub W = α W + β W gdzie α + β = 1; α, β > 0 oraz αW = a P 1, βW= b P 2 Krótka sprzedaż Sprzedajemy akcje B. Za otrzymaną kwotę kupujemy akcje A. (Portfel ma teraz w składzie 100% akcji A) Dokonujemy krótkiej sprzedaży b akcji spółki B, zaś otrzymane pieniądze inwestujemy w akcje spółki A, wartość portfela: W = a P 1 + (-b) P 2 może być zapisana jako W = α W + β W ale teraz α > 1, β < 0, (α + β = 1) W konsekwencji wzrost ceny akcji B spowoduje spadek wartości portfela

26 Parametry zmienności ceny akcji średnia, wartość oczekiwana miary rozproszenia wariancja odchylenie standardowe miary współzależności kowariancja korelacja

27 Stopa zwrotu (zysku) z akcji Metoda historyczna D i - dywidenda wypłaconą w i – tym okresie, P i, P i-1 - ceny akcji pod koniec i na początku i –tego okresu. stopa zysku w i - tym okresie

28 Stopa zwrotu z akcji Metoda historyczna

29 Oczekiwana stopa zwrotu z akcji Prognozowanie ekspertowe Stan giełdy/ trendPrawdopodobieństwoStopa zwrotu akcji A pipi riri Bessa0,1-20% Trend spadkowy0,30% Trend boczny0,25% Trend wzrostowy0,310% Hossa0,130%

30 Wartość oczekiwana zmiennej losowej (Miara tendencji centralnej) Def. Niech Ω będzie zbiorem skończonym. Wartością oczekiwaną EX zmiennej losowej X przyjmującej n wartości x 1,..., x n nazywamy liczbę

31 Wartość oczekiwana zmiennej losowej Własności (i) E (X) = a jeżeli X przyjmuje tylko jedną wartość a (ii) E (aX) = a E(X) dla dowolnej a є R (iii)E(X +Y) = E(X) + E(Y) dla dowolnych zmiennych losowych X, Y (iv)E(X + a) = E(X) + adla dowolnej liczby rzeczywistej a

32 Ryzyko papieru wartościowego. Wariancja stopy zwrotu Metoda historyczna

33 Ryzyko papieru wartościowego

34 Oba typy akcji posiadają tę samą oczekiwaną stopę zwrotu, jednak akcje typu B charakteryzują się mniejszym rozproszeniem wyników, są zatem bezpieczniejsze. Dla akcji A, oprócz dużej stopy zwrotu (30 %) może zdarzyć się duża strata (- 20%)

35 Wariancja zmiennej losowej (Miara rozproszenia wyników) Def.. Wariancją zmiennej losowej X przyjmującej n wartości nazywamy liczbę

36 Wariancja stopy zwrotu papieru wartościowego Metoda ekspertowa Stan giełdy/ trendPrawdopodo bieństwo Stopa zwrotu akcji A Składniki wariancji pipi riri (r i -R A ) 2 p i Bessa0,1-20%0,00625 Trend spadkowy0,30%0,00075 Trend boczny0,25%0 Trend wzrostowy0,310%0,00075 Hossa0,130%0,00625 wariancja 0,014

37 Ryzyko papieru wartościowego Odchylenie standardowe Wymiar odchylenia standardowego jest taki sam, jak wielkości mierzonej. Jeżeli zmienna losowa jest wyrażoną w procentach stopą zwrotu, odchylenie std. będzie miało wymiar procentowy Odchylenie std. stopy zwrotu przyjmuje się za miarę ryzyka akcji

38 Miary współzależności Kowariancja stóp zwrotu dwóch papierów wartościowych (Kowariancja zmiennych losowych) Korelacja stóp zwrotu dwóch papierów wartościowych (Korelacja zmiennych losowych)

39 Kowariancja stóp zwrotu papierów wartościowych dla danych historycznych z n okresów

40 Kowariancja stóp zwrotu papierów wartościowych (drugi wzór – dla małej liczby danych)

41 Kowariancja stóp zwrotu papierów wartościowych Prognozowanie ekspertowe

42

43 Korelacja papierów wartościowych Współczynnik korelacji stóp zwrotu papierów wartościowych to liczba

44 Korelacja zmiennych losowych Współczynnikiem korelacji zmiennych losowych X, Y o dodatnich odchyleniach standardowych nazywamy liczbę

45 Współczynnik korelacji Współczynnik korelacji będziemy oznaczać także symbolem Cor(X,Y)

46 Wariancja sumy dwóch zmiennych losowych Twierdzenie. Jeżeli X i Y są zmiennymi losowymi, określonymi na tej samej przestrzeni zdarzeń, to Var (X + Y) = Var X + Var Y+ 2Cov (X,Y) Wniosek Dla kombinacji liniowej dwóch zmiennych losowych prawdziwy jest wzór Var (aX + bY) = a 2 Var X + b 2 Var Y+ 2ab Cov (X,Y)

47 Wariancja sumy trzech zmiennych losowych Wniosek. Dla sumy trzech zmiennych losowych mamy Var (X +Y+Z) = Var X + Var Y+ VarZ + 2 Cov (X,Y) + 2 Cov (X,Z) + 2 Cov (Y,Z) Wniosek. Dla kombinacji liniowej trzech zmiennych losowych mamy Var (aX + bY + cZ) = a 2 Var X + b 2 Var Y + c 2 VarZ + +2abCov (X,Y) + 2ac Cov (X,Z) + 2bc Cov (Y,Z)

48 Stopa zwrotu portfela Oczekiwana stopa zwrotu portfela R A – stopa zwrotu z akcji A R B – stopa zwrotu z akcji B R P – stopa zwrotu z portfela Traktujemy powyższe stopy jako zmienne losowe R P = α R A + β R B R P jest zmienną losową, będącą kombinacją liniową zmiennych losowych R A, R B E(R A ) – oczekiwana stopa zwrotu z akcji A E(R B ) – oczekiwana stopa zwrotu z akcji B E(R P ) – oczekiwana stopa zwrotu z Portfela E(R P ) = α E(R A ) + β E(R B )

49 Wariancja, odchylenie std. portfela dwóch akcji Var R P = α 2 Var R A + β 2 Var R B + 2 α β Cov( R A, R B ) Var R P – wariancja portfela Cov( R A, R B ) – kowariancja stóp zwrotu akcji A, B σ P = Var R P σ P - odchylenie standardowe portfela

50 Zbiór możliwości inwestycyjnych portfela (opportunity set) Zbiór wszystkich punktów w układzie współrzędnych ryzyko zysk : [ σ P, E(R P ) ] które można uzyskać zmieniając udziały poszczególnych akcji w portfelu

51 Zbiór możliwości inwestycyjnych portfela dwóch akcji (bez krótkiej sprzedaży) akcja A akcja B Średnia stopa zwrotu 14,25 % 62,72 % Odchylenie standard. 25,25 % 37,99 %

52 Zbiór możliwości inwestycyjnych dla portfeli dwóch akcji A(10%,10%), B(20%,30%) przy różnych współczynnikach korelacji (żółty- Cor(A,B)=1, różowy - Cor(A,B)= -1)

53 Zbiór możliwości inwestycyjnych dla portfela dwóch akcji przy możliwości krótkiej sprzedaży Stopa zwrotu akcji A – 16%, B - 12%

54 Portfele dwóch akcji, tworzone z akcji 3 spółek

55 Zbiór możliwości inwestycyjnych dla portfela trzech akcji Portfele dwuakcyjne (linie ciągłe) portfele 3 akcji (kol. błękitny)

56 Zbiór możliwości inwestycyjnych dla portfela trzech akcji Krótka sprzedaż (kolor różowy)

57 Przykłady zagadnień optymalizacyjnych Ustalenie składu portfela charakteryzującego się minimalną wariancją minimalną wariancją, przy ustalonej oczekiwanej stopie zwrotu maksymalną oczekiwana stopą zwrotu, przy ustalonym poziomie ryzyka maksymalnym ilorazem oczekiwanej stopy zwrotu do ryzyka maksymalnym ilorazem oczekiwanej stopy zwrotu do ryzyka, przy uwzględnieniu stopy wolnej od ryzyka

58 Portfel efektywny Portfel efektywny to taki portfel że: Nie istnieje portfel o tej samej stopie zysku i mniejszym ryzyku Nie istnieje portfel o tym samym ryzyku i większej stopie zysku Portfele efektywne stanowią część brzegu zbioru wszystkich możliwości inwestycyjnych

59 Relacja Markowitza dla portfeli Portfel scharakteryzowany jest przez parę : odchyl. std. stopy zwrotu, oczekiwana stopa zwrotu Dla dwóch portfeli ( σ 1, R 1 ), (σ 2, R 2 ) zdefiniujemy relację oznaczoną symbolem« ( σ 1, R 1 ) « (σ 2, R 2 ) ( σ 2 σ 1 i R 1 R 2 ) Mówimy, że drugi portfel jest lepszy w sensie relacji Markowitza

60 Granica efektywna (zbiór efektywny) (efficient frontier) Odcinek krzywej będącej zbiorem portfeli, dla których nie można wskazać portfeli lepszych nazywa się granicą efektywną zbioru wszystkich możliwości inwestycyjnych (bądź zbiorem efektywnym) Punkt będący elementem granicy efektywnej nazywamy portfelem efektywnym

61 Portfel optymalny. Portfel rynkowy Portfel optymalny to portfel o maksymalnym zysku względnym przypadającym na jednostkę ryzyka ( czyli o maksymalnym stosunku oczekiwanej stopy zwrotu do odchylenia std. stopy zwrotu) Portfel rynkowy ( σ M, R M ), to portfel o maksymalnym stosunku oczekiwanego zysku ponad stopę wolną od ryzyka do odchylenia std., czyli maksimum (ER P - R F )/ σ P Gdzie R F – stopa stała, wolna od ryzyka

62 Portfel minimalnego ryzyka Portfel minimalnego ryzyka to portfel charakteryzujący się najmniejszą wartością odchylenia standardowego stopy zwrotu portfela (czyli także wariancji stopy zwrotu )

63 Portfel optymalny. Portfel rynkowy Portfel minimalnego ryzyka

64 Portfel mieszany: rynkowy ze składnikami pozbawionymi ryzyka (risk free assets) Nowy portfel ma udział α obligacji o stałej stopie zwrotu R F i zerowym ryzyku oraz udział β akcji o stopie zwrotu R M i ryzyku σ M Stopa zwr. portf. miesz.: R P = α R F + β R M gdzie α + β = 1, α, β > 0. ER P = α R F + β ER M., Wtedy Var R P = Var (β R M ) = β 2 Var (R M ) czyli σ P = β σ M wyliczając stąd β i podstawiając do wzoru na ER P, otrzymujemy ER P = (1- σ P / σ M ) R F + σ P / σ M ER M czyli ER P = R F + σ P (ER M - R F )/σ M Otrzymaliśmy liniową zależność między oczekiwana stopą zwrotu a odchyleniem standardowym dla portfela mieszanego

65 Portfel mieszany bez możliwości krótkiej sprzedaży (punkty fioletowego odcinka) Stopa wolna od ryzyka – 9%, portfel rynkowy (18,56%, 15,00%)

66 Analiza portfelowa Badanie parametrów portfelowych, określanie kryteriów doboru akcji, optymalizacja portfela Badanie parametrów portfelowych, określanie kryteriów doboru akcji, optymalizacja portfela H. Markowitz, Portfolio selection 1952 H. Markowitz, Portfolio selection 1952 J. Tobin – Liquidity preference as behavior towards risk 1958 J. Tobin – Liquidity preference as behavior towards risk 1958 F. Modigliani, M. Miller The cost of capital, corporation finance and the theory of investment 1958 F. Modigliani, M. Miller The cost of capital, corporation finance and the theory of investment 1958 W. Sharpe Capital asset pricing model 1964 W. Sharpe Capital asset pricing model 1964 J. Lintner Security prices, risk and maximal gains from diversifications 1965 J. Lintner Security prices, risk and maximal gains from diversifications 1965

67 Literatura Jajuga K., Jajuga T. Inwestycje Jajuga K., Jajuga T. Inwestycje Luenberger D.G. Teoria inwestycji finansowych Luenberger D.G. Teoria inwestycji finansowych Sopoćko A. Instrumenty finansowe Sopoćko A. Instrumenty finansowe Instrumenty pochodne. Sympozjum matematyki finansowej UJ Kraków 1997Instrumenty pochodne. Sympozjum matematyki finansowej UJ Kraków 1997 Dębski W. Rynek finansowy i jego mechanizmy Dębski W. Rynek finansowy i jego mechanizmy Murphy J.J. Analiza techniczna rynków finansowych Murphy J.J. Analiza techniczna rynków finansowych Schwager J.D.Analiza techniczna rynków terminowych Schwager J.D.Analiza techniczna rynków terminowych Komar Z. Sztuka spekulacji Komar Z. Sztuka spekulacji

68 Analiza portfelowa Harry Markowitz, Merton Miller, William Sharpe - nagroda Nobla (1990) za pionierskie prace w dziedzinie ekonomii finansowej Harry Markowitz, Merton Miller, William Sharpe - nagroda Nobla (1990) za pionierskie prace w dziedzinie ekonomii finansowej

69 Nagrody Nobla – analiza rynków finansowych 1981 James Tobin 1981 James Tobin Relacje między rynkami finansowymi a decyzjami w zakresie wydatków, bezrobociem, produkcją i cenami Relacje między rynkami finansowymi a decyzjami w zakresie wydatków, bezrobociem, produkcją i cenami 1985 Franco Modigliani 1985 Franco Modigliani Pionierska analiza oszczędności i rynków finansowych Pionierska analiza oszczędności i rynków finansowych


Pobierz ppt "Instrumenty o charakterze własnościowym Akcje. Zagadnienia Wycena akcji Wycena akcji Modele zmienności akcji Modele zmienności akcji Podstawowe parametry."

Podobne prezentacje


Reklamy Google