Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Metody Eksploracji Danych

Podobne prezentacje


Prezentacja na temat: "Metody Eksploracji Danych"— Zapis prezentacji:

1 Metody Eksploracji Danych
Eksploracja danych (1) Podstawowe pojęcia Data Mining, przebieg procesu, zastosowania Krzysztof Regulski, WIMiIP, KISiM, Konsultacje:pon, 9:45; B5, pok. 408

2 Plan wykładów Wprowadzenie do Eksploracji Danych
Repetytorium z probabilistyki i statystyki. Regresja. Analiza szeregów czasowych. Przygotowanie i wstępna obróbka danych. Dobór, eliminacja i redukcja liczby zmiennych Klasyfikacja. Grupowanie – analiza skupień. Odkrywanie asocjacji. Odkrywanie wzorców sekwencji. Eksploracja tekstu. Eksploracja sieci Web. KISIM, WIMiIP, AGH

3 Data Mining Machine Learning
Eksploracja Danych Data Mining Machine Learning

4 Gdzie stosujemy eksplorację danych?
inne ? polityka zarządzanie ekonomia gospodarka produkcja zarządzanie jakością sztuczna inteligencja: rozpoznawanie wzorców, mowy, pisma, semantyka BigData data mining KISIM, WIMiIP, AGH

5 Industry 4.0

6 Machine Learning Uczenie maszynowe jest konsekwencją rozwoju idei sztucznej inteligencji i jej praktycznego wdrażania. Algorytmy pozwalają na zautomatyzowanie procesu pozyskiwania i analizy danych do ulepszania i rozwoju własnego systemu. KISIM, WIMiIP, AGH

7 Machine Learning Data Mining – pozyskiwanie wiedzy przez człowieka
Machine Learning – odbiorcą jest maszyna, celem – usprawnienie działania. Metody (przykładowe): Indukcja drzew decyzyjnych Uczenie Bayesowskie (Bayesian Learning) Uczenie z przykładów (Instance-based Learning) (np. kNN) Sieci neuronowe Clustering Support vector machines (SVM) Analiza asocjacji (Association rule learning) Algorytmy genetyczne Wnioskowanie epizodyczne (CBR) Uczenie przez wzmacnianie (Reinforcement Learning) KISIM, WIMiIP, AGH

8 Big Data big data to zbiory informacji o dużej objętości, dużej zmienności lub dużej różnorodności, które wymagają nowych form przetwarzania w celu wspomagania podejmowania decyzji, odkrywania nowych zjawisk oraz optymalizacji procesów: szukanie, pobieranie, gromadzenie i przetwarzanie  model 4V (Volume, Velocity, Variety, Value) : wykorzystanie – wykorzystaj najpierw wewnętrzne (własne) zasoby danych; wnioskowanie – umiejętnie stosuj techniki analityczne, użyj ekspertów; wzbogacanie – wzbogacaj własne dane o informacje z rynku, używaj słowników i baz referencyjnych; weryfikacja – koniecznie weryfikuj hipotezy i wnioski. Big Data as-a-Service (BDaaS), czyli przetwarzanie w chmurze obliczeniowej wielkich zbiorów danych, to dziś najszybciej rozwijająca się gałąź IT Ponad 7 miliardów dolarów – na tyle szacowana jest wartość sektora Big Data as-a-Service (BDaaS) w roku 2020 segment Big Data rozwija się niemal 6-krotnie szybciej niż cały rynek IT

9 Big Data Early detection of defects and production failures, thus enable their prevention, increase productivity, quality, and agility benefits that have significant competitive value. Big Data Analytics consists of 6Cs in the integrated Industry 4.0 and Cyber Physical Systems environment. The 6C system comprises: Connection (sensor and networks) Cloud (computing and data on demand) Cyber (model & memory) Content/context (meaning and correlation) Community (sharing & collaboration) Customization (personalization and value) Data has to be processed with advanced tools (analytics and algorithms) to generate meaningful information. KISIM, WIMiIP, AGH

10 KISIM, WIMiIP, AGH

11 Przechowywanie / Przetwarzanie / Analiza
KISIM, WIMiIP, AGH

12 Bez analizy przechowywanie danych nie ma najmniejszego sensu.
Zalew danych Bez analizy przechowywanie danych nie ma najmniejszego sensu. UC Irvine Machine Learning Repository KISIM, WIMiIP, AGH

13 Czym jest eksploracja danych?
Eksploracja danych: proces automatycznego odkrywania nietrywialnych, dotychczas nieznanych, potencjalnie użytecznych reguł, zależności, wzorców, schematów, podobieństw lub trendów w dużych repozytoriach danych. Celem eksploracji danych jest analiza danych i procesów dla lepszego ich zrozumienia Odkrywane w procesie eksploracji danych wzorce mają najczęściej postać reguł logicznych, klasyfikatorów (np. drzew decyzyjnych), zbiorów skupień, wykresów, równań liniowych, itp. Eksploracja danych to etap odkrywania wiedzy w bazach danych KDD (Knowledge Discovery in Databases). KISIM, WIMiIP, AGH

14 Dane a wiedza Toniemy w danych, a brakuje nam wiedzy jaka jest w tych danych zawarta. „Wiedza jest specyficznym rodzajem zasobów – w przeciwieństwie do wszystkich innych, przybywa jej w miarę używania” G.Probst KISIM, WIMiIP, AGH

15 KOMPONENTY KAPITAŁU INTELEKTUALNEGO
liczbę zleceń na klienta lojalność (czas współpracy z klientem) liczbę utraconych klientów udział w rynku rozpoznawalność marki znaki handlowe inwestycje w marketing kompetencje pracowników rotacja pracowników poziom motywacji odbyte szkolenia wiedza zawarta w dokumentach KAPITAŁ LUDZKI KAPITAŁ KLIENCKI KAPITAŁ PROCESÓW KAPITAŁ INNOWACJI procedury i techniki produkcyjne systemy zarządzania jakością jakość produktów odsetek braków patenty: wartość, stan wykorzystania – korzyści płynące z patentu inwestycje w badania i rozwój odnawialność technologii IT KISIM, WIMiIP, AGH

16 Rodzaj kapitału a funkcja zarządzania
KISIM, WIMiIP, AGH

17 Zarządzanie wiedzą (Knowledge Management)
G.Probst, S.Raub, K. Romhardt Zarządzanie wiedzą (KM) - pełni rolę koordynacyjną w przedsiębiorstwie. Tworzy warunki do tworzenia lub pozyskiwania wiedzy, dzielenia się nią i wykorzystywania zajmuje się wiedzą, czyli kapitałem ludzkim – jest jedną z „funkcji” zarządzania kapitałem intelektualnym. Jego rolą jest zapewnienie sprawnego przepływu informacji i wiedzy pomiędzy wszystkimi częściami organizacji.

18 Zastosowania praktyczne
automatyczne sterowanie robotami, maszynami automatyczna nawigacja, ustalanie tras rozpoznawanie obrazów (twarzy, wzorców, pisma) rozpoznawanie mowy rozpoznawanie chorób, grup, cech, systematyka  klasyfikowanie danych do grup według kryteriów aproksymacja nieznanej funkcji na podstawie próbek przewidywanie trendów na rynkach finansowych marketing KISIM, WIMiIP, AGH

19 WebMining - zastosowania
Odkrywanie i analiza informacji gromadzonych w serwisie (web content mining): wydzielenie tematów (przestrzenie tematyczne) analiza tekstów (text mining) katalogowanie zawartości na podstawie założonych kryteriów (crawlery) Odkrywanie i analiza wzorców korzystania z serwisu przez użytkowników (web usage mining) analiza logów wykrywanie sesji w serwisach bez identyfikacji wykrywanie ścieżek nawigacyjnych wykrywanie „wzorców sposobów korzystania” struktura obciążenia systemu Analiza struktury serwisu - analiza korzystania z odsyłaczy (web structure mining) wykrywanie nieużywanych, błędnych, ścieżki „na około”, martwe końcówki KISIM, WIMiIP, AGH

20 Proces odkrywania wiedzy
Heterogeniczne źródła danych wybór zmiennych przekształcenia interpretacja i ocena odkrytych struktur KISIM, WIMiIP, AGH

21 Dziedziny naukowe eksploracji danych
Eksploracja danych to zadanie interdyscyplinarne: statystyka, technologie bazodanowe, uczenie maszynowe, rozpoznawanie wzorców, sztuczna inteligencja, wizualizacja. “Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać” KISIM, WIMiIP, AGH

22 Techniki eksploracji danych
wizualizacje na wykresach metody statystyczne sieci neuronowe metody uczenia maszynowego metody ewolucyjne logika rozmyta zbiory przybliżone KISIM, WIMiIP, AGH

23 KISIM, WIMiIP, AGH

24 KISIM, WIMiIP, AGH

25 Metody eksploracji danych
klasyfikacja/regresja (classifications) grupowanie/analiza skupień (clustering) odkrywanie sekwencji (sequential patterns) odkrywanie charakterystyk analiza przebiegów czasowych (time-series similarities) odkrywanie asocjacji (associations) wykrywanie zmian i odchyleń (deviation detection) eksploracja WWW eksploracja tekstów KISIM, WIMiIP, AGH

26 Przykładowe algorytmy z zakresu Data Mining
indukcja drzew (CART, CHAID) Grupowanie (k-Średnich; EM) SVM, ANN RoughSets NeuroFuzzy (ANFIS) MARSplines, ANOVA, VEPAC analiza regresji liniowej i nieliniowej, regresja logistyczna, analiza przeżycia modele szeregów czasowych ARIMA analiza ANOVA analiza skupień modele drzew decyzyjnych (klasyfikacyjne/regresyjne, CART) Sztuczne Sieci Neuronowe metody klasyfikacji: najbliższych sąsiadów, naiwny klasyfikator Bayesa algorytmy indukcji reguł analiza asosjacji analiza składowych głównych PCA metoda wektorów nośnych SVM algorytm NIPALS komponenty wariacyjne (VEPAC) Sieci neuronowe data mining Narzędzia:   → STATISTICA - StatSoft   → IBM- SPSS Statistics    → środowisko R   → Weka   → Oracle Data Mining   → Enterprise Miner SAS   → Mine Set - Silicon Graphics   → Alteryx   → RapidMiner   → Data Mining Client for Excel   → Azure   → GNU PSPP - a program for statistical analysis   → OpenStat   → Statistical Lab KISIM, WIMiIP, AGH

27 Sztuczna Inteligencja ?

28 Inteligencja Czy inteligencja jest jakąś jedną dziedziną, czy też jest to nazwa dla zbioru odrębnych i niepowiązanych zdolności? Co zyskujemy w procesie uczenia się? Co to jest intuicja? Czy inteligencja może być nabyta wskutek nauki lub obserwacji, czy też jest jakoś uwarunkowana wewnętrznie? Jak wiedza wpływa na wzrost inteligencji? Czy inteligencja to szczegółowa wiedza o jakiejś dziedzinie, czy zbiór związanych ze sobą różnych zdolności? KISIM, WIMiIP, AGH

29 w ten sposób sztuczna inteligencja nigdy nie ma żadnych osiągnięć
Inteligencja jest zdolnością do sprawnego rozwiązywania zadań intelektualnych, które zazwyczaj uchodzą za trudne. … są trudne tak długo, jak długo nie są znane algorytmy ich rozwiązywania, potem przestają być traktowane jako zadania sztucznej inteligencji w ten sposób sztuczna inteligencja nigdy nie ma żadnych osiągnięć KISIM, WIMiIP, AGH

30 sztuczna inteligencja - rozwiązywanie „trudnych” zadań
Czy to jest trudny problem ? × A to: ”Kochanie, kup ładny kawałek wołowiny…” KISIM, WIMiIP, AGH

31 Krzysztof Manc (Wynalazca)
Robot kolejkowy EWA-1 -Pan tu nie stał, pan nie jest w ciąży. - Moja konstrukcja jest optymalna, tylko ludzie nie dorośli do tego. Wolą sami stać w kolejkach. Krzysztof Manc (Wynalazca) KISIM, WIMiIP, AGH

32 Zagadnienia Sztucznej Inteligencji (AI)
Soft Computing Optymalizacja badania operacyjne Algorytmy ewolucyjne i genetyczne reprezentacja wiedzy Logika rozmyta Sieci neuronowe wnioskowanie Metody statystyczne Computational Intelligence - numeryczne Artificial Intelligence - symboliczne Systemy ekspertowe Rachunek prawdopodobieństwa Wizualizacja Data mining Uczenie maszynowe Rozpoznawanie Wzorców KISIM, WIMiIP, AGH

33 Przykłady zadań sztucznej inteligencji
dokonywanie ekspertyz ekonomicznych, prawnych, technicznych, medycznych (ocena) wspomaganie podejmowania decyzji (doradzanie) rozpoznawanie obrazów, twarzy, wzorców, etc. optymalizacja (harmonogramowanie, alokacja zasobów, planowanie tras) generacja nowej wiedzy (poszukiwanie zależności, tendencji, reguł, etc – data mining) prognozowanie zjawisk ekonomicznych, przyrodniczych rozumienie języka naturalnego sterowanie urządzeniami (roboty etc) i inne… KISIM, WIMiIP, AGH

34 Czy nam to szybko grozi? KISIM, WIMiIP, AGH

35 Klasy metod (techniki) eksploracji danych
Odkrywanie asocjacji (kojarzenie, odkrywanie wzorców i reguł, opis zależności) - najszersza klasa metod obejmująca, najogólniej, metody odkrywania interesujących zależności lub korelacji, nazywanych ogólnie asocjacjami pomiędzy danymi w dużych zbiorach danych. Wynikiem działania metod odkrywania asocjacji są zbiory reguł asocjacyjnych lub wzorców sekwencji opisujących znalezione zależności i/lub korelacje. KISIM, WIMiIP, AGH

36 Klasy metod (techniki) eksploracji danych
Klasyfikacja (modelowanie przewidujące) - obejmuje metody odkrywania modeli (tak zwanych klasyfikatorów) lub funkcji opisujących zależności pomiędzy zadaną klasyfikacją obiektów a ich charakterystyką. Odkryte modele klasyfikacji są, następnie, wykorzystywane do klasyfikacji nowych obiektów o nieznanej klasyfikacji. Klasyfikacja często korzysta z algorytmów opartych na drzewach decyzyjnych lub sieciach neuronowych. Użycie tych algorytmów rozpoczyna się od podania im w ramach uczenia się (treningu) zbioru przykładów już sklasyfikowanych. W wypadku wykrywania nadużyć, zbiór taki zawierałby przypadki (przykłady) gdzie wystąpiło nadużycie oraz przypadki „uczciwe”. KISIM, WIMiIP, AGH

37 Klasy metod (techniki) eksploracji danych
Regresja (analiza regresji, modelowanie przewidujące) również korzysta z procesu uczenia się, z tą różnicą w stosunku do klasyfikacji, że powstaje tu funkcja (a nie odwzorowanie), która danemu elementowi przyporządkowuje konkretną wartość. Przykładem jej zastosowania jest przewidywanie popytu na nowy produkt w zależności od wydatków na reklamę. Jeśli zmienne wykorzystywane w modelach opartych na regresji mają złożoną naturę (np. wielkość sprzedaży, wskaźniki giełdowe), to zwykle do zaimplementowania regresji korzysta się z sieci neuronowych, a to z uwagi na ich przydatność w „sytuacjach nieliniowych”. KISIM, WIMiIP, AGH

38 Klasy metod (techniki) eksploracji danych
Grupowanie (analiza skupień, klastrowanie, modelowanie opisowe, segmentacja) - obejmuje metody analizy danych i znajdowania skończonych zbiorów klas obiektów posiadających podobne cechy (podział na nieznane wcześniej grupy). Grupowanie polega na przyporządkowaniu branego pod uwagę elementu do jednej lub wielu grup, przy czym grupy te są wyznaczane na podstawie analizy danych, a nie jak w przypadku klasyfikacji, gdzie klasy są zadane. KISIM, WIMiIP, AGH

39 Klasy metod (techniki) eksploracji danych
Wykrywanie punktów osobliwych - obejmuje metody wykrywania (znajdowania) obiektów osobliwych, które odbiegają od ogólnego modelu danych (klasyfikacja i predykcja) lub modeli klas (analiza skupień). Często, metody wykrywania punktów osobliwych stanowią integralną część innych metod eksploracji danych, na przykład, metod grupowania. KISIM, WIMiIP, AGH

40 Klasy metod (techniki) eksploracji danych
Analiza przebiegów (szeregów) czasowych obejmuje metody analizy przebiegów czasowych w celu znalezienia: trendów, podobieństw, anomalii oraz cykli. możliwe cele: zależność pomiędzy operacjami zależność pomiędzy wystąpieniami odkrywanie wzorców sekwencji prognozowanie zjawisk KISIM, WIMiIP, AGH

41 Klasy metod (techniki) eksploracji danych
Odkrywanie charakterystyk – opisy koncepcji/klas – obejmuje metody znajdowania zwięzłych opisów lub podsumowań ogólnych własności klas obiektów. Znajdowane opisy mogą mieć postać reguł charakteryzujących lub reguł dyskryminacyjnych. W tym drugim przypadku, opisują różnice pomiędzy ogólnymi własnościami klasy docelowej (klasy analizowanej) a własnościami klasy (zbioru klas) kontrastującej (klasy porównywanej). Analiza trendów i odchyleń – obejmuje metody analizy danych zmiennych w czasie w celu znalezienia różnic pomiędzy aktualnymi a oczekiwanymi wartościami danych, anomalnych zmian wartości danych w czasie, itp. Eksploracja tekstu, Eksploracja WWW – obejmuje wyszukiwanie według zawartości (podobnych wzorców) KISIM, WIMiIP, AGH


Pobierz ppt "Metody Eksploracji Danych"

Podobne prezentacje


Reklamy Google