Na szczęście nie jesteśmy skazani na iterację funkcjonalną 2)metoda Newtona-Raphsona (stycznych) szukamy zera równania nieliniowegoF(x) F(x n +  x)=F(x.

Slides:



Advertisements
Podobne prezentacje
Modelowanie i symulacja
Advertisements

Modelowanie i symulacja
Rozwiązywanie równań różniczkowych metodą Rungego - Kutty
Metody numeryczne część 3. Całkowanie metodą Eulera i Simpsona.
Metody numeryczne część 1. Rozwiązywanie układów równań liniowych.
IV Tutorial z Metod Obliczeniowych
Różniczkowanie numeryczne
Metody rozwiązywania układów równań liniowych
Zadanie z dekompozycji
Metody Numeryczne Wykład no 12.
Wykład no 9.
Przykład: Dana jest linia długa o długości L 0 bez strat o stałych kilometrycznych L,C.Na początku linii zostaje załączona siła elektromotoryczna e(t),
Wykład no 11.
Problemy nieliniowe Rozwiązywanie równań nieliniowych o postaci:
Liniowość - kryterium Kryterium Znane jako zasada superpozycji
Metoda węzłowa w SPICE.
Problemy nieliniowe Rozwiązywanie równań nieliniowych o postaci:
OPORNOŚĆ HYDRAULICZNA, CHARAKTERYSTYKA PRZEPŁYWU
Metody matematyczne w Inżynierii Chemicznej
Metoda różnic skończonych I
Metody matematyczne w inżynierii chemicznej
ETO w Inżynierii Chemicznej
Metody matematyczne w Inżynierii Chemicznej
AUTOMATYKA i ROBOTYKA (wykład 6)
Zakładamy a priori istnienie rozwiązania α układu równań.
MECHANIKA NIEBA WYKŁAD r.
Modelowanie i Identyfikacja 2011/2012 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Warstwowe.
Źródła błędów w obliczeniach numerycznych
Maciej Paszyński Katedra Informatyki Akademia Górniczo-Hutnicza
Rozwiązywanie liniowych układów równań metodami iteracyjnymi.
Szeregi funkcyjne dr Małgorzata Pelczar.
Metody matematyczne w Inżynierii Chemicznej
Metody matematyczne w inżynierii chemicznej Wykład 3. Całkowanie numeryczne.
METHOD OF LINES (MOL) Poznan University of Life Sciences Department of Hydraulic and Sanitary Engineering Hamdi, Schiesser & Griffiths:
Tematyka zajęć LITERATURA
Wstęp do metod numerycznych
Metody rozwiązywania układów równań nieliniowych
Metody nieinkluzyjne: Metoda iteracji prostej.
Dynamika punktu materialnego Dotychczas ruch był opisywany za pomocą wektorów r, v, oraz a - rozważania geometryczne. Uwzględnienie przyczyn ruchu - dynamika.
Wykład Rozwinięcie potencjału znanego rozkładu ładunków na szereg momentów multipolowych w układzie sferycznym Rozwinięcia tego można dokonać stosując.
jawny schemat Eulera [globalny błąd O(Dt)]
Równania różniczkowe zwyczajne: problem brzegowy [1D]
Metody sztucznej inteligencji – technologie rozmyte i neuronoweReguła propagacji wstecznej  Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów.
Układ jest w stanie X. Do jakiego stanu przejdzie? wybieramy losowo stan próbny X p z pewnego otoczenia stanu X X p :=X+(  x 1,  x 2,...,  x n ) – 
region bezwzględnej stabilności dla ogólnej niejawnej metody RK
Problem opisany RRZ jest sztywny gdy: jest charakteryzowany różnymi skalami czasowymi. 2.Stabilność bezwzględna nakłada silniejsze ograniczenia na.
Problem opisany RRZ jest sztywny gdy: jest charakteryzowany różnymi skalami czasowymi. 2.Stabilność bezwzględna nakłada silniejsze ograniczenia na.
Szacowanie błędu lokalnego w metodach jednokrokowych
Symulacje obliczeniowe: w technice: inżynieria obliczeniowa: modelowanie i symulacja zjawisk i działania urządzeń. badania i optymalizacji procesów produkcyjnych.
[przepis na kolejne wartości rozwiązania liczone
U(t) t  t u’(t)=f(t,u) u(t+  t)=u(t)+  (t,u(t),  t) RRZ: Jednokrokowy schemat różnicowy.
inżynierskie metody numeryczne
Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej.
Czy błąd całkowity maleje gdy Dt maleje ? Czy maleje do zera?
ELEMENTY METOD NUMERYCZNYCH
jawna metoda Eulera niejawna metoda Eulera
U(0)=0 proste równanie traktowane jawnym schematem Eulera.
Jawny schemat Eulera Czy błąd całkowity maleje gdy  t maleje ? Czy maleje do zera? eksperyment numeryczny problem początkowy: u’= u, u(0)=1 z rozwiązaniem.
Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym a=vdt/dx upwind: centralny:
yi b) metoda różnic skończonych
Liniowe metody wielokrokowe dla równań zwyczajnych starsze niż RK o 50 lat użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania.
DALEJ Sanok Spis treści Pojęcie funkcji Sposoby przedstawiania funkcji Miejsce zerowe Monotoniczność funkcji Funkcja liniowa Wyznaczanie funkcji liniowej,
Fundamentals of Data Analysis Lecture 12 Approximation, interpolation and extrapolation.
Teoria sterowania Wykład /2016
Metody matematyczne w Inżynierii Chemicznej
Analiza numeryczna i symulacja systemów
ETO w Inżynierii Chemicznej
Jednorównaniowy model regresji liniowej
Sterowanie procesami ciągłymi
Hiperpowierzchnia energii potencjalnej cząsteczki
Zapis prezentacji:

Na szczęście nie jesteśmy skazani na iterację funkcjonalną 2)metoda Newtona-Raphsona (stycznych) szukamy zera równania nieliniowegoF(x) F(x n +  x)=F(x n )+  x F’(x n ) F(x n +  x)=0 x n+1 =x n -F(x n )/F’(x n )

2)metoda Newtona-Raphsona szukamy zera równania nieliniowego F(x n +  x)=F(x n )+  x F’(x n ) F(x n +  x)=0 x n+1 =x n -F(x n )/F’(x n )

niejawny schemat Eulera z metodą Newtona-Raphsona, zastosowanie problem początkowy: u’=-100u, u(0)=1 z rozwiązaniem dokładnym u(t)=exp(  t) kolejne przybliżenia:  t=0.05 (jawny Euler stabilny bezwzględnie dla  t <0.02) 1, , zbieżność w jednej iteracji - F jest liniowa w u Wniosek: dla liniowych równań f liniowe jest również F wtedy iteracja Newtona zbiega się w jednej iteracji niezależnie od wielkości  t zakres zbieżności: w praktyce  t znacznie większy niż w iteracji funkcjonalnej ale: niedostępne proste oszacowane przedziału zbieżności w praktyce iteracja Newtona – szybsza i szerzej zbieżna niż iteracja funkcjonalna

niejawny schemat Eulera z metodą Newtona-Raphsona, zastosowanie dla problemu nieliniowego problem początkowy: dla równania: u’=u(u-1)

czerwone niejawny Euler z krokiem  t=0.1 u(0)=0.8 iteracja dla u(  t) ze startem w u(0):

niejawny schemat Eulera z metodą Newtona-Raphsona gdy przepis funkcyjny nieznany (np. programujemy metodę dla dowolnego f ) można szacować z ilorazu różnicowego (poniżej centralny = dokładnie różniczkuje parabole) cena zastąpienia dokładnej pochodnej ilorazem różnicowym? przy osiągniętej zbieżności - nie zmieni rozwiązania! może tylko spowolnić iterację! dla naszego przykładu u’=u(u-1) centralny iloraz różnicowy zadziała dokładnie dla dowolnego du żeby przykład był ciekawszy: policzmy pochodną z wstecznego ilorazu różnicowego

dokładna pochodna u’=f(u)=u(u-1) metoda Newtona dla pochodnej f liczonej numerycznie w każdej iteracji: u(0)=0.8, pierwszy krok t=  t: iloraz wsteczny du=u/10 iloraz wsteczny du=u/ numeryczne liczenie pochodnych w każdej iteracji może być kosztowne przybliżenie w liczeniu pochodnej nie zmienia wyniku do którego iteracja zbiega bo: x n+1 =x n -F(x n )/F’(x n ) nieco spowalnia iterację w praktyce można np. wstawić tutaj u n-1 można również używać oszacowania pochodnej w wielu kolejnych iteracjach odnawiać pochodną gdy iteracja zwalnia

dla naszego przykładu: f(u)=u(u-1) z dt=0.1 iterowana pochodna pochodna brana z punktu t n-1, u n bez różnicy! dt=0.5 iterowana z poprzedniego kroku dt=1 iterowana stara wolniej brak zbieżności  iteracja Newtona z pochodną liczoną w poprzednim kroku (nieiterowaną) w mianowniku: 1-dt(2u-1) stara: 0.94, doiterowana stara: 0.7 doiterowana: stara 0.4 doiterowana 0.89 zamiast

t u(t) f(t,u) tt [t,u(t)] dokładne [t+  t,u(t+  t)] jawny schemat Eulera [globalny błąd O(  t)] t u(t) f(t,u) tt [t+  t,u(t+  t)] niejawny schemat Eulera [globalny błąd O(  t)] t u(t) f(t,u) tt [t,u(t)] dokładne [t+  t,u(t+  t)] przesunięcie wyliczane na podstawie średniej arytmetycznej z chwil t i t+  t [wzór trapezów]

dokładność wzóru trapezów a jawnego schematu Eulera: eksperyment Równanie: Warunek początkowy: u 1 =u(t 1 =0)=1 Rozwiązanie: Punkt t 2 =0.5 u 2 = ? [dokładnie: ] Euler jawny jeden krok: u 2 =u 1 +  t t 1 u 1 =u 1 = 1 jawny Euler u2u2 wzór trapezów u 2 =u 1 +(t 1 u 1 +t 2 u 2 )  t /2 = u 1 +t 2 u 2  t /2 u 2 := u 1 +u 2 /8 iteracja funkcjonalna wynik 8/7 TR wygląda na bardziej dokładny od E: niejawny Euler: 4/3=1.333 (pokazać) nieco gorzej niż jawny

Oszacować błąd lokalny wzoru trapezów 1. rozw. Taylora wstecz 2. dla dowolnej funkcji ciągłej f(t)=f(t+  t)+O(  t) (wstawimy, rząd błędu pozostanie trzeci) 3. Rozwiązać na u(t+  t) Euler miał rząd obcięcia  t 2 pozbyć się go.

3. Rozwiązać na u(t+  t) [przepisane] 4. Uśrednić z rozwinięciem Taylora do przodu 5. Wynik 6. Korzystamy z równania jawny i niejawny Euler – lokalny błąd rzędu drugiego (rząd dokładności 1) wzór trapezów – lokalny błąd rzędu trzeciego (rząd dokładności 2)

stabilność bezwzględną wzoru trapezów problem modelowy: WP: u(t=0)=1. rozwiązanie u=exp( t) zbiór punktów na p. Gaussa, które są nie dalej od (-2,0) niż od (2,0)

Wniosek: dla <0 wzór trapezów bezwzględnie stabilny dla dowolnego kroku czasowego ! A-stabilny druga bariera Dahlquista: maksymalny rząd dokładności metody A-stabilnej =2 schemat trapezów jest najdokładniejszą metodą A-stabilną spośród liniowych metod wielokrokowych Implementowana np. w SPICE.  t Re( )  t Im ( ) region bzwz. stabilności wzoru trapezów

 t Re( )  t Im ( ) region bzwz. stabilności Eulera: koło o promieniu 1 i środku (-1,0)  t Re( )  t Im ( ) region bzwz. stabilności wzoru trapezów  t Re( )  t Im ( ) 1 niejawna metoda Eulera: region bezwzględnej stabilności  =0,1,1/2 – Euler jawny, niejawny i wzór trapezów odpowiednio w wykładzie na temat niejawnych formuł RK zobaczymy, że dokładność rzędu 2 uzyskana tylko dla  =1/2 region stabilności ? między metodami można przechodzić w sposób ciągły

problem początkowy: u’=-100u, u(0)=1 z rozwiązaniem dokładnym u(t)=exp(  t ) iteracja funkcjonalna a wzór trapezów  t=0.01 = graniczny dla zbieżności IF dla niejawnego Eulera 1,0, 0.5, 0.25, 0.375, , , , , , ,..., niestety iteracja funkcjonalna dla  t=0.02 już przestaje być zbieżna (+1,-1,+1,-1,itd..) wzór trapezów zwiększa zakres zbieżności iteracji dwukrotnie (wyraz podkreślony stabilizuje iteracje) ale to wciąż mało metoda Newtona-Raphsona pozostaje wzór trapezów = używa prawej strony z poprzedniego kroku czasowego z wagą 0.5 – co nieco stabilizuje iterację.

jawne metody różnicowe wysokiej dokładności ?? 1) 2) 3) Poznane metody: jednokrokowe (1-3), jawna (1) i niejawne (2-3), pierwszego (1-2) i drugiego (3) rzędu dokładności Metody (2-3) A stabilne, metoda (2) nadstabilna poznane metody: )

rozwinięcie Taylora ponownie: jawne metody jednokrokowe wyższego rzędu dokładności niż jawny Euler u’=f(t,u), u(0)=u 0 liczymy pochodne: z RR. RR różniczkujemy po czasie czyli podobnie Zależnie od tego gdzie się zatrzymamy uzyskamy błąd lokalny zadanego rzędu

Zależnie od tego gdzie się zatrzymamy uzyskamy błąd lokalny zadanego rzędu np. pomysł: mało przydatny w praktyce ze względu na konieczność analitycznego wyliczenia pochodnych cząstkowych f. Dla metod ogólnych: nie powinniśmy liczyć, że f jest dane wzorem

podejście alternatywne: inspirowane całkowaniem prawa strona = funkcja tylko t z rozwiązaniem: t n-1 t n jeśli zastąpimy całkę kwadraturą prostokątów z wywołaniem funkcji w lewym końcu przedziału u(t n )=u(t n-1 )+  t f(t n-1 ) + O(  t 2 ) - rozpoznajemy jawny schemat Eulera t n-1 t n kwadratura prostokątów z wywołaniem funkcji w prawym końcu przedziału u(t n )=u(t n-1 )+  t f(t n ) + O(  t 2 ) - rozpoznajemy niejawny schemat Eulera t n-1 t n kwadratura trapezów u(t n )=u(t n-1 )+  t f(t n )/2+  t f(t n-1 )/2 + O(  t 3 ) - rozpoznajemy niejawny schemat trapezów

t n-1 t n-1/2 t n wzór prostokątów z wywołaniem funkcji w środku przedziału (dokładny dla funkcji liniowej, znoszenie błędów) uogólniony wzór na równanie równania u’=f(t,u) reguła punktu środkowego ale - skąd rozwiązanie w środku przedziału? np. ze schematu Eulera: błąd lokalny Eulera O(  t 2 ), czy reguła punktu środkowego zachowa trzeci rząd błędu lokalnego?

sprawdźmy to rozważając bardziej ogólny schemat: obliczone gdzieś w środku przedziału (t n-1,t n ) z odpowiednio oszacowanym rozwiązaniem u dla tego t (wzór typu Eulera) jest to jawny dwustopniowy schemat Rungego-Kutty. potencjalna wyższa dokładność od jawnego Eulera kosztem dwóch wywołań f (podobnie jak we wzorze trapezów, ale RK: jawny) reguła punktu środkowego:należy do tej klasy z b 1 =0, b 2 =1, c=1/2, a =1/2 b1,b2,a,c – parametry metody –jakie muszą być aby RK2 (2 = rząd dokładności) obliczone na początku kroku

Jawne metody Rungego-Kutty dwustopniowe: wybór parametrów jak dobrać b 1,b 2,c,a ? – metodą brutalnej siły - tak aby rozwinięcie Taylora metody zgadzało się z rozwinięciem Taylora dokładnego równania różniczkowego do wyrazów tak wysokiego rzędu jak to tylko możliwe przypominamy: rozwinięcie Taylora dla funkcji dwóch zmiennych u’=f(t,u) wstawiamy rozwiązanie dokładne u(t n ), u(t n-1 ) do (*) i rozwijamy względem t n-1, u n-1 (*)

to trzeba rozwinąć (wszystko liczone w t n-1,u n-1 ) wstawmy k 2 do rozwinięcia. Zachowajmy człony do  t 2: rozwinięcie Taylora rozwiązania dokładnego uzyskaliśmy kilka slajdów wcześniej czyli: rząd  t: b 1 +b 2 =1, rząd  t 2 : b 2 c=b 2 a=1/2 czyli reguła punktu środkowego: b 1 =0, b 2 =1, c=1/2, a =1/2 ma błąd lokalny rzędu O(  t 3 ) mamy metodę równie dokładną co wzór trapezów – ale jawną (co ma swoje zalety i wady) Wyższy rząd błędu do uzyskania tylko w metodach o większej niż 2 liczbie stopni

cztery parametry i trzy równania b 1 +b 2 =1 b 2 c=b 2 a=1/2- pozostaje swoboda w wyborze parametrów reguła punktu środkowego RK2 albo (przesunięty indeks) t u(t) tt [t,u(t)] dokładne [t+  t/2,y(t+  t/2)] 1) Szacujemy metodą Eulera punkt środkowy [t+  t/2,u(t+  t/2)] korzystając z f(t,u) w lewym końcu przedziału 2) Wykorzystujemy wartość f w tym punkcie do wyliczenia zmiany y na całym przedziale  t dwa zastosowania jawnego schematu Eulera b 1 =0, b 2 =1, c=1/2, a =1/2 oszacowanie wstępne w punkcie pośrednim (błąd lokalny rzędu drugiego) oszacowanie docelowe (błąd lokalny oszacowania: rzędu trzeciego)

inny wybór: b 1 =b 2 =1/2, wtedy musi a=c=1 RK punktu środkowego:b 1 +b 2 =1, b 2 c=b 2 a=1/2 metoda podobna do wzoru trapezów (ale jawna) t u(t) tt [t,u(t)] dokładne 1) Szacujemy metodą Eulera punkt końcowy [t+  t,u(t+  t)] korzystając z f(t,u) w lewym końcu przedziału 2) krok z t do t+  t wykonujemy biorąc średnią arytmetyczną z f na początku i końcu metoda RK2 trapezów

punkt środkowy b2=1, b1=0 [b1+b2]=1 czy ma sens b1=1, b2=0 ? dla błędu lokalnego O(  t 3 ) potrzeba aby, rząd  t: b 1 +b 2 =1, rząd  t 2 : b 2 c=b 2 a=1/2

Metody Rungego-Kutty, forma ogólna są to metody jednokrokowe, czyli można zapisać: metoda RK w s-odsłonach (stage) (unikamy słowa „krok”) z wzory przedstawiane w formie tabel Butchera c A b

czasem zapisywane w postaci: tutaj U i – przybliżone rozwiązanie w chwili t n-1 +c i  t zazwyczaj niższej dokładności niż rozwiązanie końcowe Metody Rungego-Kutty, forma ogólna

jawne metody Rungego-Kutty a ij =0 dla j  i jawne: obcięte sumowanie: odsłona i-ta wyliczana na podstawie tylko wcześniejszych odsłon historycznie wszystkie RK były jawne, uogólnienie okazało się przydatne dla problemów sztywnych

Wyprowadzanie formuł RK (a,b,c) 1)Rozwijamy rozwiązanie dokładne w szereg Taylora względem t n-1 2)Podstawiamy rozwiązanie dokładne do ogólnej formy RK i rozwijamy względem t n-1 3)Wartości parametrów a,b,c uzyskujemy z porównania. zazwyczaj w sposób niejednoznaczny najbardziej popularne: jawne formuły 4-etapowe RK4: o 4-tym stopniu zbieżności (4-tym rzędzie dokładności) i 5-tym rzędzie błędu lokalnego ogólna tabela Butchera: dla jawnych RK4 c 1 =0 (dla każdej jawnej RK, zaczynamy – k 1 od wyliczenia prawej strony w kroku początkowym)

klasyczna formuła RK4: u(t) k1k1 k2k2 k3k3 k4k4 u’ 4 wywołania f na krok, błąd lokalny O(  t 5 ) gdy f tylko funkcja czasu RK4 redukuje się do formuły Simpsona :

Jawne schematy RK dla układu równań różniczkowych 2 zmienne zależne u 1, u 2, 2 prawe strony f 1, f 2 2 równania, s-odsłon (i=1,2,...,s) zapis wektorowy u n-1, u n, f, U 1, U 2,... U N są wektorami o 2 składowych