Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałDyta Szczęsny Został zmieniony 10 lat temu
1
Problemy nieliniowe Rozwiązywanie równań nieliniowych o postaci:
gdzie f(x) jest funkcją nieliniową Obejmuje to oczywiście przypadek każdego równania:
2
Problemy nieliniowe Szczególnym przypadkiem są wszelkiego rodzaju problemy optymalizacyjne – poszukiwanie ekstremum (maksimum albo minimum) funkcji kosztu lub zysku: gdzie f’(x) to pierwsza pochodna funkcji f(x)
3
Poszukiwanie inkrementacyjne
4
Bisekcja
5
Bisekcja
6
Metoda Brenta
7
Metoda Brenta
9
Rozwinięcie w szereg Taylora
Jeżeli znamy wartość funkcji i wszystkich jej pochodnych w pewnym punkcie, można wyznaczyć na tej podstawie wartość w innym punkcie:
10
Rozwinięcie w szereg Taylora
Przy obcięciu do wyrazu rzędu k reszta rozwinięcia może być oszacowana jako składnik rzędu (O - funkcja Landaua):
11
Rozwinięcie w szereg Taylora
Często jest stosowane nawet rozwinięcie obcięte pierwszego rzędu: Jest to tym lepsze przybliżenie prawdziwej wartości, im mniejsza jest wartość Δx Do takiego przybliżenia nawiązuje algorytm Newtona-Raphsona
12
Algorytm Newtona-Raphsona
Raphson współpracował z Newtonem, w charakterze jego sekretarza(?), redaktora jego dzieł? Metodę rozwiązywania równań nieliniowych ogłosił książkowo w 1891, podczas gdy analogiczna metoda Newtona została opublikowana w książce z 1736, choć napisanej w 1871 roku. Newton znał książkę Raphsona i wyrażał się o niej pochlebnie. Trudno więc ustalić, kto był autorem pomysłu. Metoda zwana jest więc pod nazwą Newtona-Raphsona. Isaac Newton ( ) Joseph Raphson ( )
13
Algorytm Newtona-Raphsona
14
Algorytm Newtona-Raphsona
Algorytm zaczyna z pewnego punkty x0, będącego pierwszym oszacowaniem prawdziwego rozwiązania x* W punkcie x0 na podstawie znajomości pochodnej funkcji f(x0) rozwiązywane jest równanie liniowe:
15
Algorytm Newtona-Raphsona
Rozwiązanie tego równania: wyznacza kolejne oszacowanie rozwiązania x*:
16
Algorytm Newtona-Raphsona
Ten sam sposób postępowania jest stosowany w kolejnych iteracjach: Kolejne wartości xi są coraz lepszymi oszacowaniami x*
17
Przykład
18
Algorytm Newtona-Raphsona
Zamiast wyprowadzenia bazującego na rozwinięciu Taylora można zastosować intuicję geometryczną: Wartość pochodnej funkcji w punkcie to nachylenie stycznej do wykresu funkcji w tym punkcie
19
Algorytm Newtona-Raphsona
Problem nieliniowy jest zastąpiony serią problemów liniowych Każdy problem liniowy jest lokalnym przybliżeniem Taylora pierwszego rzędu dla problemu nieliniowego
20
Algorytm Newtona-Raphsona
W każdej iteracji jest wyznaczane kolejne przybliżenie rozwiązania Proces iteracyjny jest kończony kiedy względny błąd procentowy: spadnie poniżej ustalonej wartości (dokładności algorytmu) Może być również zastosowane ograniczenie na maksymalną ilość iteracji algorytmu
21
Algorytm Newtona-Raphsona
System rozwiązujący równanie: zgodnie z algorytmem Newtona-Raphsona nie zna „globalnie” funkcji f(x), natomiast musi mieć możliwość zapytać o wartość f(x), f’(x) w arbitralnym punkcie x Kolejne pytania o wartość funkcji zwiększają wiedzę systemu rozwiązującego o funkcji. Początkowa hipoteza dotycząca rozwiązania x0 z każdą iteracją ulega zmianie, dzięki uwzględnieniu nowych informacji o funkcji f(x)
23
Przykład zastosowania
Wyznaczanie odwrotności liczby Normalnie, żeby wyznaczyć odwrotność liczby a należy podzielić 1 przez liczbę a Możliwe jest też rozwiązania nieliniowego; jeśli x jest odwrotnością a, to spełnione jest:
24
Przykład zastosowania
25
Przykład zastosowania
26
Przykład – iteracja 1
27
Przykład – iteracja 2
28
Przykład – iteracja 3
29
Pułapki – wybór punktu startowego
30
Pułapki – wybór punktu startowego
31
Pułapki – oscylacje dookoła ekstremum
32
Ekstrema – dzielenie przez zero
33
Pułapki – jedno z wielu rozwiązań
34
Przykład aplikacji Superkomputery, takie jak Cray pozbawione są jednostki dzielenia liczb Zamiast dzielenia przez liczbę, realizowane jest mnożenie przez jej odwrotność: Odwrotność liczby jest znajdowana przez algorytm Newtona-Raphsona (jak we wcześniejszym przykładzie)
35
Przykład aplikacji Każda iteracja wymaga dwóch mnożeń i jednego odejmowania Wyznaczenie odwrotności przy podwójnej precyzji wymaga ok. sześciu iteracji Jeżeli punkt startowy jest wybrany odpowiednio (z tabeli) – ilość iteracji zmniejsza się o połowę Często stosowany jest sprzętowy akumulator mnożąco-odejmujący
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.