Sterowanie – metody alokacji biegunów Stosowane dalej oznaczenia System MIMO Przy czym: wymiar wymiar wymiar wymiar wymiar wymiar wymiar oraz rząd ; rząd Przy ekstrapolacji zerowego rzędu i czasie zatrzaśnięcia Ts jeżeli istnieje
: macierz systemu, stała, rzeczywista, wymiaru , Sformułowanie problemu Będziemy rozważali zasadniczo przypadki, kiedy gdzie: : macierz systemu, stała, rzeczywista, wymiaru , tzn. : wektor stanu, rzeczywisty, wymiaru , tzn. : wektor wejścia, rzeczywisty, wymiaru , tzn. : macierz wejścia, stała, rzeczywista, wymiaru , tzn. : wektor wyjścia lub obserwacji, rzeczywisty, wymiaru , tzn. : macierz wyjścia lub obserwacji, stała, rzeczywista, wymiaru , tzn.
Zadanie sterowania: System będący w chwili początkowej ( dla systemów stacjonarnych) w stanie początkowym , należy przeprowadzić do pożądanego stanu końcowego, lub operacyjnego , zapewniając w stanie przejściowym spełnienie określonych wymagań dynamicznych takich jak np. czas narastania, przeregulowania, … . Po osiągnięciu stanu operacyjnego , wartość wyjścia musi być zwykle równa narzuconej wartości zadanej Rozwiązanie: Przesłanie zwrotne wektora stanu na wejście z wykorzystaniem macierzy sprzężenia zwrotnego Wprowadzenie wartości zadanej poprzez macierz wzmocnień
Kompensacja wzmocnień statycznych (macierz sprzężenia w przód) Przypadek ciągły: Obiekt Sterownik (prawo sterowania) Kompensacja wzmocnień statycznych (macierz sprzężenia w przód) Macierz jest stałą macierzą o wymiarze i nazywana jest macierzą sterownika Cechy: - w skrajnym przypadku ma elementów, - jako macierz stała związana ze stanem pełni rolę sterownika proporcjonalnego - poprzez związek pełni też rolę sterownika różniczkującego - nie daje sprzężenia o charakterze całkującym
Równania opisujące system zamknięty: Stąd: Równanie stanu systemu zamkniętego i macierz systemu zamkniętego oraz macierz wejścia Na system działają dwie wielkości zewnętrzne - stan początkowy - sygnał wartości zadanej
Przypadek ciągły – działanie regulacyjne Metody regulacyjne mają na celu przeprowadzenie wektora stanu systemu ze stanu początkowego do stanu operacyjnego (końcowego) przy zadanych warunkach Będzie to wynikać z odpowiedniego doboru macierzy
Przykład 1 – mały silnik p. s Przykład 1 – mały silnik p.s. z obciążeniem inercyjnym i pomijalną indukcyjnością obwodu twornika (patrz budowa modelu – wykład z MiI) k = , L = 0 Zmienne modelu: - zmienne stanu - zmienna wyjścia
Równania stanu w postaci macierzowej: Równania wyjścia w postaci macierzowej: Schemat blokowy analogowy modelu silnika PS
Silnik używany do sterowania położeniem kątowym lub liniowym Przykład – pozycjonowanie głowicy plotera Model w postaci nie-macierzowej Transformacja Laplace’a
Transmitancja operatorowa
gdzie, - wzmocnienie w torze napięcie – położenie, - stała czasowa silnika W wielu przypadkach
Pożądany obszar alokacji biegunów systemu zamkniętego Wówczas i Równania stanu dla tych warunków Chcemy umieścić wartości własne systemu zamkniętego w określonych miejscach Pożądany obszar alokacji biegunów systemu zamkniętego Linie stałej wartości współczynnika tłumienia i pulsacji drgań nietłumionych systemu rzędu drugiego
Wybierzmy Wielomian charakterystyczny systemu zamkniętego Jest to też wielomian charakterystyczny macierzy systemu zamkniętego Równania opisujące system zamknięty: Stąd Równanie stanu systemu zamkniętego i macierz systemu zamkniętego
Wielomian charakterystyczny macierzy systemu zamkniętego W przykładzie Stąd
Z porównania dwóch wielomianów charakterystycznych i stąd Wybierając możemy określić Z klasycznej teorii: odwrotność stałej czasowej – pulsacja załamania
Dla systemu drugiego rzędu oraz Gdyby np. pulsacja drgań nietłumionych miałaby być pięciokrotnie większa od pulsacji załamania, a współczynnik tłumienia stąd i wzmocnienia
Schemat zbudowanego systemu sterowania Silnik
Przykład 2 – system mechaniczny rzędu drugiego Model - masa - współczynnik sprężystości - współczynnik tłumienia - siła zewnętrzna Zmienne stanu Równania stanu
Jeżeli przyjąć jako wejście przyśpieszenie ruchu Jeżeli przyjąć jako wejście przyśpieszenie ruchu – macierz systemu i macierz wejścia Wyprowadzając jak w Przykładzie 1 transmitancję - pulsacja drgań nietłumionych i współczynnik tłumienia wyniosą
Postępując dalej podobnie jak w przykładzie 1 - wielomian charakterystyczny z drugiej strony gdzie Z porównania dwóch wielomianów charakterystycznych
Jeżeli chcemy, aby system zamknięty był „wolniejszy” od systemu oryginalnego Wartość będzie ujemna Obliczenia numeryczne dla danych Macierz systemu i macierz wejścia Wartości własne, pulsacja drgań nietłumionych i współczynnik tłumienia
System bardzo słabo tłumiony – celem sterowania może być zwiększenie tłumienia Jeżeli przyjąć wówczas
Schemat zbudowanego systemu sterowania
Wyniki symulacji Bez sprzężenia Ze sprzężeniem
Dziękuję za uczestnictwo w wykładzie i uwagę