Dane INFORMACYJNE (do uzupełnienia)

Slides:



Advertisements
Podobne prezentacje
Wykład 20 Mechanika płynów 9.1 Prawo Archimedesa
Advertisements

Mechanika płynów.
FIZYKA dla studentów POLIGRAFII Wykład 9 Mechanika płynów
Płyny Płyn to substancja zdolna do przepływu.
SŁAWNI FIZYCY.
Materiały pochodzą z Platformy Edukacyjnej Portalu
Archimedes, urodził się około 287 p. n. e. , zmarł około 212 p. n. e
Projekt „AS KOMPETENCJI’’
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE Nazwa szkoły:
Płyny – to substancje zdolne do przepływu, a więc są to ciecze i gazy
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
Woda i Życie dawniej i dziś.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Nazwa szkoły: Publiczne Gimnazjum im. Książąt Pomorza Zachodniego w Trzebiatowie ID grupy: 98/46_MF_G1 Kompetencja: Zajęcia projektowe, komp. Mat.
CIŚNIENIE ATMOSFERYCZNE
Napory na ściany proste i zakrzywione
STATYKA PŁYNÓW 1. Siły działające w płynach Siły działające w płynach
Prawo Pascala.
Bryły, które cieszą wzrok i pobudzają wyobraźnię
Dane INFORMACYJNE ID grupy: B3 Lokalizacja: Białystok
Matematyczno – fizyczna
Dane INFORMACYJNE Nazwa szkoły: Gimnazjum w Polanowie im. Noblistów Polskich ID grupy: 98/49_MF_G1 Kompetencja: Fizyka i matematyka Temat.
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół w Lipinkach Łużyckich
Wykonała: Natalia Staniak Simona Burtka
DANE INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ W LINI
Dane INFORMACYJNE Zespół Szkół w Mosinie 98/67_MF_G2 Kompetencja:
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE Nazwa szkoły:
1.
Elementy hydrostatyki i aerostatyki
DANE INFORMACYJNE im. Ks. Jana Twardowskiego Nazwa szkoły:
Historyczne przyrządy ułatwiające prace człowiekowi
Dane INFORMACYJNE (do uzupełnienia)
1.
Sławni matematycy.
Spis treści 1. Dane informacyjne 2. Co to jest gęstość? 3. Przyrządy do mierzenia gęstości 4. Układ SI 5. Archimedes 6. Prawo Archimedesa 7. Zadanie z.
Prezentacja międzyszkolnej grupy projektowej
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane INFORMACYJNE Nazwy szkół: ZESPÓŁ SZKÓŁ IM. KAROLA MARCINKOWSKIEGO
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane informacyjne: Nazwa szkoły: Gimnazjum w Wierzbnie
Temat: Gęstość materii Definicja: Gęstość (masa właściwa)- jest to stosunek masy pewnej porcji substancji do zajmowanej przez nią objętości.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane INFORMACYJNE Prawo Archimedesa Nazwa szkoły:
DANE INFORMACYJNE (DO UZUPEŁNIENIA)
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane Informacyjne Nazwa szkoły:
Podstawy mechaniki płynów - biofizyka układu krążenia
Archimedes Wielki fizyk i uczony
RÓWNIA POCHYŁA PREZENTACJA.
siła cz.II W części II prezentacji: o sile ciężkości
WŁAŚCIWOŚCI MATERII Zdjęcie w tle każdego slajdu pochodzi ze strony:
3. Parametry powietrza – ciśnienie.
Siły, zasady dynamiki Newtona
Dynamika.
Przygotowanie do egzaminu gimnazjalnego
1.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
DANE INFORMACYJNE Cisnienie hydrostatyczne i atmosferyczne
Dynamika punktu materialnego Dotychczas ruch był opisywany za pomocą wektorów r, v, oraz a - rozważania geometryczne. Uwzględnienie przyczyn ruchu - dynamika.
CO TO JEST CIŚNIENIE? Ciśnienie – wielkość skalarna określona jako wartość siły działającej prostopadle do powierzchni podzielona przez powierzchnię na.
PODSTAWY MECHANIKI PŁYNÓW
Mechanika płynów Naczynia połączone Prawo Pascala.
1.
Statyczna równowaga płynu
KARTEZJUSZ i PASCAL
Grecki fizyk i matematyk
Statyczna równowaga płynu
Zapis prezentacji:

Dane INFORMACYJNE (do uzupełnienia) Nazwa szkoły: Publiczne gimnazjum w Człopie ID grupy: 98/7_mf_g1 Kompetencja: Fizyczno- matematyczna Temat projektowy: Ciśnienie hydrostatyczne i atmosferyczne. Semestr V , rok szkolny: 2010/11

Blaise Pascal Życie i odkrycia

Życiorys Blaise Pascal (ur. 19 czerwca 1623 w Clermont-Ferrand, zm. 19 sierpnia 1662 w Paryżu) to francuski filozof, matematyk, fizyk i publicysta, powszechnie uważany za następcę Kartezjusza. Rozbudował zasady logiki i metodologii. Za wzór wiedzy uważał geometrię. Sądził jednak, że nie pozwala ona poznać nieskończoności i nie pomaga w rozwiązywaniu zagadnień etycznych czy religijnych. Uważał, że zasady geometrii ułatwiają poznanie faktów, ale nie przynoszą ich zrozumienia, a bez zrozumienia trudno mówić o poznaniu. „Trójkąt Pascala”

Jego wczesne dzieła powstawały spontanicznie, lecz w istotny sposób przyczyniły się do rozwoju nauki. Miał on znaczący wkład w konstrukcję mechanicznych kalkulatorów i mechanikę płynów; sprecyzował także pojęcia ciśnienia i próżni, uogólniając prace Torricelliego. Naczynia połączone - co najmniej dwa naczynia skonstruowane tak, że ciecz może swobodnie między nimi przepływać, na przykład przez połączenie znajdujące się w dnie każdego z nich.

Ciśnienie Prawo Pascala, jest jednym z podstawowych praw hydrostatyki: Ciśnienie zewnętrzne przenoszone jest w płynie znajdującym się w zamkniętym naczyniu jednorodnie we wszystkich kierunkach. W statycznym płynie siła jest przenoszona z prędkością dźwięku i działa prostopadle na całą powierzchnię ograniczającą płyn lub wyróżnioną wewnątrz niego. Zasadę tę wykorzystuje się w podnośniku hydraulicznym, oponie pneumatycznej i podobnych urządzeniach. Prawo odkryte w 1647 r. W gazach i cieczach ciśnienie działa jednakowo we wszystkich kierunkach. Paskal – jednostka ciśnienia (także naprężenia) w układzie SI (Jednostka pochodna układu SI), oznaczana Pa. Hektopaskal jest zazwyczaj stosowany przy podawaniu ciśnienia atmosferycznego

CIŚNIENIE

Ciśnienie - wielkość skalarna określona jako wartość siły działającej prostopadle do powierzchni podzielona przez powierzchnię na jaką ona działa, co przedstawia zależność gdzie: p – ciśnienie (Pa), Fn – składowa siły prostopadła do powierzchni (N), S – powierzchnia (m²). W przypadku gazów w stanie ustalonym w spoczynku 0, ciśnienie jakie gaz wywiera na ścianki naczynia jest funkcją objętości, masy i temperatury i dlatego w termodynamice traktowane jest jako parametr stanu. Uogólnieniem pojęcia ciśnienia jest naprężenie.

Ciśnienie względne i bezwzględne Ciśnienie może być określone względem próżni – tzw. ciśnienie bezwzględne czyli absolutne, lub względem ciśnienia w otoczeniu – nadciśnienie (lub ciśnienie względne, jednak ten termin jest dwuznaczny). W technice powszechnie mierzy się i podaje ciśnienie płynów względem ciśnienia atmosferycznego; nadciśnienie w tym znaczeniu określa się jako ciśnienie manometryczne. Przykładowo, że jeśli ciśnienie w pojemniku jest równe 0,3 MPa (nadciśnienie), to ciśnienie bezwzględne wynosi 0,3 MPa + 0,1 MPa = 0,4 MPa (0,1 MPa to ciśnienie atmosferyczne). Przed upowszechnieniem układu SI ciśnienie manometryczne zaznaczano przez dodanie litery n po symbolu wymiaru ciśnienia. Dla odróżnienia, ciśnienie absolutne zaznaczało się przez dodanie litery a, tzn. w przytoczonym przykładzie ciśnienie byłoby podane jako 3 atn lub 4 ata (stosując przybliżenie 0,1 MPa = 1 at).

Archimedes Archimedes z Syrakuz ok. 287-212 p.n.e. grecki filozof przyrody i matematyk, urodzony i zmarły w Syrakuzach; wykształcenie zdobył w Aleksandrii. Był synem astronoma Fidiasza i prawdopodobnie krewnym lub powinowatym władcy Syrakuz Hierona II.

W czasie drugiej wojny punickiej kierował pracami inżynieryjnymi przy obronie Syrakuz. Rzymianie myśleli, że sami bogowie bronią miasta, gdyż za murami schowane machiny oblężnicze jego konstrukcji ciskały pociski w ich stronę. Archimedes został zabity przez żołnierzy rzymskich po zdobyciu miasta, mimo wyraźnego rozkazu dowódcy, Marcellusa, by go ująć żywego. Później gorzko tego żałowano. Na życzenie Archimedesa na jego nagrobku wyryto kulę, stożek i walec. Pewna legenda głosi, że żołnierz, który go zabił wpierw kazał mu się poddać. Ten jednak zajęty problemem geometrycznym i rysowaniem figur na piasku skarcił go, mówiąc: "Nie niszcz moich figur". Oburzony Rzymianin zabił Archimedesa swoim mieczem

Praca naukowa Autor traktatu o kwadraturze odcinka paraboli, twórca hydrostatyki i statyki, prekursor rachunku całkowego. Stworzył też podstawy rachunku różniczkowego. W dziele Elementy mechaniki wyłożył podstawy mechaniki teoretycznej. Zajmował się również astronomią – zbudował globus i (podobno) planetarium z hydraulicznym napędem, które Marcellus zabrał jako jedyny łup z Syrakuz, opisał ruch pięciu planet, Słońca i Księżyca wokół nieruchomej Ziemi.

Odkrycia Archimedesa prawo Archimedesa aksjomat Archimedesa zasadę dźwigni – sławne powiedzenie Archimedesa "Dajcie mi punkt podparcia, a poruszę Ziemię" prawa równi pochyłej środek ciężkości i sposoby jego wyznaczania dla prostych figur pojęcie siły

Prawo Archimedesa podstawowe prawo hydro- i aerostatyki określające siłę wyporu. Nazwa prawa wywodzi się od jego odkrywcy Archimedesa z Syrakuz. Na ciało zanurzone w płynie (cieczy, gazie lub plazmie) działa pionowa, skierowana ku górze siła wyporu. Wartość siły jest równa ciężarowi wypartego płynu. Siła ta jest wypadkową wszystkich sił parcia płynu na ciało.

Aksjomat Archimedesa Aksjomat geometrii głoszący, że każdy odcinek jest krótszy od pewnej wielokrotności długości każdego innego odcinka. Z niego wynika nieograniczoność prostej. Został on wbrew nazwie sformułowany po raz pierwszy przez Eudoksosa, a nazwany w ten sposób przez Otto Stoltza w 1883. Geometrie nie spełniające go zwane są niearchimedesowymi.

Dźwignia jedna z maszyn prostych, których zadaniem jest uzyskanie działania większej siły przez zastosowanie siły mniejszej. Zbudowana jest ze sztywnej belki zawieszonej na osi. Dźwignia wchodzi w skład wielu mechanizmów, które również często nazywane są w skrócie dźwignią . W zależności od położenia osi względem działających sił rozróżnia się dźwignię dwustronną i jednostronną.

Równia pochyła Jedna z maszyn prostych. Urządzenia, których działanie oparte jest na równi, były używane przez ludzkość od dawnych dziejów. Przykładem równi jest dowolna płaska pochylnia. Równia to płaska powierzchnia nachylona do poziomu pod pewnym kątem. Wyznaczanie parametrów ruchu ciała po tej powierzchni (przede wszystkim wyznaczenie przyspieszenia) nazywane jest zagadnieniem równi.

Środek ciężkości ciała lub układu ciał jest punktem, w którym przyłożona jest wypadkowa siła ciężkości danego ciała. Dla ciała znajdującego się w jednorodnym polu grawitacyjnym środek ciężkości pokrywa się ze środkiem masy dlatego pojęcia te często są mylone lub wręcz utożsamiane. W geometrii (w tym stereometrii) pojęcie środka ciężkości jest synonimem środka masy.

Pojęcie siły wektorowa wielkość fizyczna będąca miarą oddziaływań fizycznych między ciałami. Jednostką miary siły w układzie SI jest niuton [N]. Nazwa tej jednostki pochodzi od nazwiska wybitnego fizyka Isaaca Newtona. W układzie CGS jednostką siły jest dyna. W układzie ciężarowym jednostką siły jest kilogram-siła [kgf][1] (lub [kG], inaczej kilopond [kp]). Siła ma wartość 1 N, jeżeli nadaje ciału o masie 1 kg przyspieszenie 1 m/s².

Legenda o odkryciu prawa wyporu Władca Syrakuz, Hieron II, powziął podejrzenie, że złotnik, któremu powierzono wykonanie korony ze szczerego złota, sprzeniewierzył część otrzymanego na to kruszcu i w zamian dodał pewną ilość srebra. W celu rozwiania trapiących go wątpliwości zwrócił się do Archimedesa z prośbą o ustalenie, jak sprawa ma się naprawdę. Prośbę swą Hieron II obwarował żądaniem, którego spełnienie przekreślało, wydawałoby się, możliwość uczynienia zadość życzeniu władcy. Otóż w żadnym wypadku Archimedes nie mógł zepsuć misternie wykonanej korony, istnego arcydzieła sztuki złotniczej. Długo, aczkolwiek bezskutecznie, rozmyślał fizyk nad sposobem wybrnięcia z sytuacji. Pewnego razu Archimedes, zażywając kąpieli w wannie i nieustannie rozmyślając nad powierzonym mu zadaniem, zauważył, że poszczególne członki jego ciała są w wodzie znacznie lżejsze niż w powietrzu.

Nasunęło mu to myśl, że istnieje określony stosunek między zmniejszeniem się ciężaru ciała zanurzonego, a ciężarem wypartego płynu (prawo Archimedesa). Zachwycony prostotą własnego odkrycia wybiegł nago z wanny z radością krzycząc Heureka ! Heureka!, co znaczy po grecku Znalazłem!. Stanąwszy przed obliczem Hierona, Archimedes łatwo wykazał fałszerstwo złotnika. Okazało się bowiem, że korona, niby szczerozłota, wyparła więcej cieczy, niż równa jej co do wagi bryła złota, co oznacza, że miała większą objętość, a więc mniejszą gęstość – nie była ze złota.

Wynalazki Archimedesa śruba Archimedesa przenośnik ślimakowy zegar wodny organy wodne machiny obronne udoskonalił wielokrążek i zastosował go do wodowania statków

Anegdota Anegdota głosi, że pochłonięty rozwiązywaniem zadań matematycznych Archimedes przestał się myć, w wyniku czego zaczął wydzielać nieprzyjemny zapach. Gdy siłą nasmarowano go oliwą i ciągnięto by go wykąpać, kreślił na swoim ciele koła kontynuując swoje rozważania

Warunki pływania ciał

1. Jeżeli gęstość ciała jest większa niż gęstość płynu to ciało pływa (ciało będzie pływało po powierzchni cieczy, jeśli jego siła wyporu przy maksymalnym zanurzeniu będzie większa niż ciężar tego ciała). 2. Jeżeli gęstość ciała jest mniejsza niż gęstość płynu to ciało tonie (siła wyporu jest mniejsza od siły ciężkości – ciało tonie). 3. Jeżeli gęstość ciała jest równa gęstości płynu to ciało pływa pod wodą (siły wyporu i ciężkości są sobie równe – wtedy ciało pozostaje w bezruchu unosząc się w płynie).

2. Ciało tonie wtedy gdy siła wyporu jest mniejsza od siły ciężkości. 1. Ciało pływa po powierzchni wtedy gdy siła wyporu jest większa od siły ciężkości. 2. Ciało tonie wtedy gdy siła wyporu jest mniejsza od siły ciężkości. 3. Ciało pływa zanurzone wtedy gdy siła wyporu jest równa sile ciężkości.

Dlaczego liść unosi się na wodzie a nie tonie? Dzieje się to za sprawą siły wyporu, grawitacji i gęstości ciała i cieczy. W tym wypadku siła wyporu jest większa od siły grawitacji, więc liść pływa na powierzchni wody, a nie tonie (Fw > Fg).  Liść ma mniejszą gęstość niż woda w kałuży (DL < DH2O). Gdy ciało (w tym wypadku liść) pływa po powierzchni wody siła ciężkości jest równoważona przez siłę wyporu (siły ciężkości i wyporu mają równe wartości, ale przeciwne zwroty).

Dlaczego statek nie tonie? Statek pływa po wodzie, ponieważ ma dużą siłę wyporu. W jego wnętrzu jest powietrze, które nie pozwala mu zatonąć. Jeżeli do jego wnętrza dostaje się woda to siła wyporu maleje i całkowicie znika a w wyniku tego statek tonie.

Doświadczenie z rodzynkami i wodą gazowaną Po wrzuceniu kilku rodzynków do szklanki z wodą gazowaną rodzynki opadają na dno, następnie unoszą się do góry, po czym ponownie opadają na dno. W przypadku niektórych rodzynków proces powtarza się ponad 10 razy. Dlaczego tak się dzieje? Rodzynki mają większą gęstość niż woda, więc opadają na dno, ponieważ woda jest gazowana, więc do rodzynków przyczepiają się bąbelki. To powoduje, że siła wyporu, działająca na rodzynki wzrasta. Rodzynki wypływają na powierzchnię. W tym momencie bąbelki uciekają i rodzynki znów opadają na dno, ponieważ ich siła wyporu maleje.

Dlaczego balony unoszą się w powietrzu? Balony  są napełnione ciepłym powietrzem, które jest lżejsze od chłodnego w powietrzu. Dlatego się unosi.  

Dlaczego żyletka unosi się na wodzie? Na powierzchni wody tworzy się coś w rodzaju błony, na której możemy położyć lekkie przedmioty o gęstości większej w porównaniu z wodą. Dlatego żyletka nie tonie. Gdy jednak dodamy do wody detergent, np. płyn do naczyń, spowoduje on rozbicie napięcia powierzchniowego i zatonięcie żyletki.

Doświadczenie 1

Uczeń naciskał i puszczał strzykawkę podłączoną do sprzętu , który mierzył ciśnienie.

Gdy chłopiec mocniej naciskał strzykawkę ciśnienie rosło, a kiedy puszczał malało.

Doświadczenie 2

Potęga ciśnienia hydrostatycznego

Definicja: Ciśnienie hydrostatyczne – ciśnienie, wynikające z ciężaru cieczy znajdującej się w polu grawitacyjnym. Ciśnienie hydrostatyczne nie zależy od wielkości i kształtu zbiornika, a zależy wyłącznie od jego głębokości. Wzór ciśnienia hydrostatycznego: Phydro=p∙g∙h p - gęstość cieczy (w układzie SI w ) g - przyspieszenie ziemskie (grawitacyjne)(w układzie SI w ) h - głębokość zanurzenia w cieczy (w układzie SI w metrach[m])

Do doświadczenia będziemy potrzebować: Termofor Wąż ogrodowy Butelke plastikową(obcięta do połowy)

Doświadczenie

Wniosek: Mała ilość wody w butelce może unieść człowieka dzięki ciśnieniu hydrostatycznemu jakie wywiera na termofor.

Doświadczenie 3 z dziurawą butelką na ciśnienie

- plastikowa butelka - nóż lub szpilka (może być inne ostre narzędzie) Potrzebne przyrządy - plastikowa butelka - nóż lub szpilka (może być inne ostre narzędzie)

Opis wykonania doświadczenia 1. Zrób dziurę szpilką w kilku miejscach na plastikowej butelce po wodzie mineralnej. Pamiętaj aby otwory miały jednakową wielkość.

2. Połóż butelkę w zlewie oraz napełnij ją wodą 2. Połóż butelkę w zlewie oraz napełnij ją wodą. Zwróć uwagę z których otworów woda wypływa szybciej, a z których wolniej.

Wniosek Woda wywiera ciśnienie nie tylko na dno naczynia, ale także na jej ściany boczne. Ciśnienie rośnie im większa głębokość. Nacisk cieczy wywołany jej ciśnieniem może działać w każdym kierunku.

Doświadczenie 4

Doświadczenie nr 1, usuwanie powietrza z butelki: Widoczne na zdjęciu urządzenie, na którym stoi butelka, to pompa próżniowa. Umożliwia ona wytworzenie próżni, czyli znaczne zmniejszenie ciśnienia w butelce poprzez prawie całkowite usunięcia powietrza z wnętrza butelki. Po uruchomieniu pompy ciśnienie wewnątrz butelki będzie znacznie mniejsze niż na zewnątrz, w wyniku czego zostanie ona zgnieciona w ciągu kilkunastu sekund.

Doświadczenie nr 2, wieszaki na podciśnienie: Wyniki: Po podważeniu nożem, przyssawka odpadnie. Wyjaśnienie: Po przyssaniu przyssawki do ściany, powstało pod nią podciśnienie (ciśnienie niższe niż na zewnątrz), które utrzymywało ją przy ścianie. W momencie podważenia nożem, między brzegiem przyssawki a ścianą powstaje szczelina, przez którą wlatuje powietrze, ciśnienia się wyrównują (pod przyssawką teraz ciśnienie jest takie samo jak na zewnątrz) i nic nie trzyma przyssawki przy ścianie, więc przyssawka odpada.