Wykład 11 Jakość regulacji. Regulator PID

Slides:



Advertisements
Podobne prezentacje
Wzmacniacze Operacyjne
Advertisements

Korekcja liniowych układów regulacji
Podstawy Automatyki 2009/2010 Projektowanie układów sterowania Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. 1 Katedra Inżynierii.
REGULATORY Adrian Baranowski Tomasz Wojna.
Regulatory Proporcjonalno – Całkujące PI
Sprzężenie zwrotne Patryk Sobczyk.
Filtracja sygnałów „Teoria sygnałów” Zdzisław Papir.
SYSTEMY CZASU RZECZYWISTEGO Wykłady 2008/2009 PROF. DOMINIK SANKOWSKI.
T44 Regulacja ręczna i automatyczna
Opis matematyczny elementów i układów liniowych
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów regulacji.
Teoria sterowania Wykład 3
Automatyka Wykład 4 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów regulacji (c.d.)
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów, elementów i układów.
Modele matematyczne przykładowych obiektów i elementów automatyki
Wykład 12 Metoda linii pierwiastkowych. Regulatory.
Automatyka Wykład 7 Regulatory.
Automatyka Wykład 6 Regulacja napięcia generatora prądu stałego.
AUTOMATYKA i ROBOTYKA (wykład 7)
Wykład 5 Charakterystyki czasowe obiektów regulacji
Wykład 6 Charakterystyki czasowe obiektów regulacji
Wykład 5 Charakterystyki czasowe obiektów regulacji
Charakterystyki czasowe obiektów, elementów i układów regulacji
AUTOMATYKA i ROBOTYKA (wykład 4)
Podstawowe elementy liniowe
AUTOMATYKA i ROBOTYKA (wykład 6)
Wykład 25 Regulatory dyskretne
Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.
Wykład 21 Regulacja dyskretna. Modele dyskretne obiektów.
Automatyka Wykład 9 Transmitancja operatorowa i stabilność układu regulacji automatycznej.
Wykład 10 Regulacja dyskretna (cyfrowa i impulsowa)
Wykład 7 Charakterystyki częstotliwościowe
Wykład 8 Statyczne i astatyczne obiekty regulacji
AUTOMATYKA i ROBOTYKA (wykład 10)
Kryteria stabilności i jakość układów regulacji automatycznej
Stabilność i jakość regulacji
Automatyka Wykład 27 Linie pierwiastkowe dla układów dyskretnych.
Karol Rumatowski d1.cie.put.poznan.pl Sterowanie impulsowe Wykład 1.
Analiza wpływu regulatora na jakość regulacji (1)
Automatyka Wykład 26 Analiza układu regulacji cyfrowej z regulatorem PI i obiektem inercyjnym I-go rzędu.
Sterowanie impulsowe Wykład 2.
Wykład 4 Modele matematyczne obiektów, elementów i układów regulacji.
1 Automatyka Wykład 31 Związki między charakterystykami częstotliwościowymi układu otwartego i zamkniętego.
Analiza wpływu regulatora na jakość regulacji
„Windup” w układach regulacji
Sterowanie – metody alokacji biegunów
Regulacja dwupołożeniowa i trójpołożeniowa
Wykład 8 Statyczne i astatyczne obiekty regulacji
Wykład 8 Charakterystyki częstotliwościowe
Automatyka Wykład 13 Regulator PID
Wykład 23 Modele dyskretne obiektów
Teoria sterowania Wykład 9 Transmitancja operatorowa i stabilność liniowych układu regulacji automatycznej.
Wykład 12 Regulator dyskretny PID. Regulacja dyskretna.
Teoria sterowania Wykład 13 Modele dyskretne obiektów regulacji.
Metody uzyskiwania równania wejścia-wyjścia obiektu sterowania.
Wykład 9 Regulacja dyskretna (cyfrowa i impulsowa)
Wykład 7 Jakość regulacji
SW – Algorytmy sterowania
ISS – Synteza regulatora cyfrowego (minimalnoczasowego)
Schematy blokowe i elementy systemów sterujących
Wykład nr 1: Wprowadzenie, podstawowe definicje Piotr Bilski
Systemy wbudowane Wykład nr 3: Komputerowe systemy pomiarowo-sterujące
Sterowanie – metody alokacji biegunów
W1. GENERATORY DRGAŃ SINUSOIDALNYCH
Odporne sterowanie napędami elektrycznymi z wykorzystaniem algorytmów niecałkowitego rzędu Krzysztof Oprzędkiewicz Wydział EAIiIB Katedra Automatyki i.
Podstawy automatyki I Wykład /2016
Sterowanie procesami ciągłymi
Teoria sterowania Materiał wykładowy /2017
Układy regulacji automatycznej
Obiekty dyskretne w Układach Regulacji Automatycznej
Zapis prezentacji:

Wykład 11 Jakość regulacji. Regulator PID Teoria sterowania Wykład 11 Jakość regulacji. Regulator PID

Wskaźniki jakości regulacji Dokładność statyczna Wskaźniki jakości związane z odpowiedzią skokową układu regulacji  czas regulacji,  czas narastania,  maksymalne odchylenie dynamiczne,  przeregulowanie. Wskaźniki jakości związane z charakterystyką częstotliwościową pasmo przenoszenia, zapas modułu, zapas fazy, Wskaźniki całkowe. zapas stabilności

Przebieg oscylacyjny odpowiedzi skokowej h1 h w0=hust t + – tp tr

Zapas stabilności (zapas modułu i zapas fazy)

Schemat blokowy układu ze sprzężeniem zwrotnym układ ze sprzężeniem zwrotnym układ bez sprzężenia zwrotnego [dB] Logarytmiczne charakterystyki amplitudowe: układu zamkniętego i układu bez sprzężenia zwrotnego _ + W(s) Y(s) ksp Schemat blokowy układu ze sprzężeniem zwrotnym Układ bez sprzężenia zwrotnego Układ ze sprzężeniem zwrotnym (układ zamknięty) Z charakterystyk przedstawionych na rysunku i obliczonych dla k = =104, ksp = 0,1 i T = 0,01 s wynika, że układ otwarty ma pasmo przenoszenia równe 100 rad/s i wzmocnienie w tym paśmie 104 (80 dB), natomiast układ zamknięty ma pasmo przenoszenia równe 105 rad/s i wzmocnienie równe 10 (20 dB). Dzięki wprowadzeniu sprzężenia zwrotnego uzyskujemy zwiększenie pasma przenoszenia i zmniejszenie wzmocnienia w porównaniu z układem bez sprzężenia zwrotnego.

Regulator PID (proporcjonalno-całkująco-różniczkujący)

Równanie regulatora PID analogowego (1) Odpowiedź skokowa (2) kp t h(t) arc tg kp/Ti 2kp Ti

Transmitancja operatorowa regulatora PID (3) Transmitancja widmowa (4)

Transmitancja operatorowa regulatora PID rzeczywistego Odpowiedź skokowa t h Ti T kp

Regulator dyskretny PID regulator analogowy Algorytm pozycyjny PID

Algorytm przyrostowy PID