Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.

Slides:



Advertisements
Podobne prezentacje
Metody badania stabilności Lapunowa
Advertisements

Systemy stacjonarne i niestacjonarne (Time-invariant and Time-varing systems) Mówimy, że system jest stacjonarny, jeżeli dowolne przesunięcie czasu  dla.
Sieć jednokierunkowa wielowarstwowa
Systemy/modele rozmyte – podstawy i struktury
Hydraulika SW – modele elementów i systemu
Modele hydrauliki elementów SW
Modele systemu wodociągowego ciśnieniowego
Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii.
Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model.
Czy potrafimy obliczyć wartość wyjścia sieci znając wartości jej wejść? Tak, przy założeniu, że znamy aktualne wartości wag i progów dla poszczególnych.
Etapy modelowania matematycznego
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Komputerowe wspomaganie decyzji 2010/2011Wprowadzenie – mapa pojęć Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1 Określenie.
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
Model Takagi – Sugeno – Kang’a - TSK
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły;
Nieliniowa metoda najmniejszych kwadratów
Problem transportowy. Transport towarów od dostawców (producentów) do odbiorców odbywa się dwustopniowo przez magazyny hurtowe z przeładunkiem na mniejsze.
Systemy dynamiczne – przykłady modeli fenomenologicznych
Liniowe modele decyzyjne – rozwiązania i analiza post-optymalizacyjna
Modelowanie matematyczne
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Systemy dynamiczne – przykłady modeli fenomenologicznych
Metody Lapunowa badania stabilności
Systemy/modele rozmyte – podstawy i struktury
Semestr letni roku akademickiego 2013/2014
Obserwatory zredukowane
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Modelowanie – Analiza – Synteza
Modelowanie – Analiza – Synteza
Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.
Cechy modeli obiektów dynamicznych z przedstawionych przykładów:
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
Podstawy automatyki 2011/2012Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów.
Systemy/modele rozmyte – podstawy i struktury
Wybrane modele rozmyte i schematy wnioskowania
Modelowanie i podstawy identyfikacji 2012/2013Schematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii.
AUTOMATYKA i ROBOTYKA (wykład 5)
Wybrane zadania automatyka, w których stosuje on modele:
Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Podstawy modelowania i identyfikacji 2011/2012Modele fenomenologiczne - metodyka Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Systemy/modele rozmyte – podstawy i struktury
Etapy modelowania matematycznego
Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Sterowanie – metody alokacji biegunów
Sterowalność - osiągalność
Sterowanie – metody alokacji biegunów II
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć dynamiki systemów i teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym.
Modele dyskretne – dyskretna aproksymacja modeli ciągłych lub
Przykład 1: obiekt - czwórnik RC
Systemy dynamiczne 2014/2015Odpowiedzi – systemy liniowe stacjonarne  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System.
Wybrane zadania automatyka, w których stosuje on modele:
Przykład 5: obiekt – silnik obcowzbudny prądu stałego
Systemy/modele rozmyte – podstawy i struktury
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania SNUpraszczanie schematów blokowych transmitancyjnych – znajdowanie transmitancji zastępczej  Kazimierz Duzinkiewicz, dr hab. inż.Katedra.
Warstwowe sieci jednokierunkowe – perceptrony wielowarstwowe
 Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Metody sztucznej inteligencji – Technologie rozmyte i neuronoweSystemy.
Podstawy automatyki I Wykład 1b /2016
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania Podstawy automatyki 2015/2016 Dynamika obiektów - modele 1 Podstawy automatyki.
Podstawy automatyki I Wykład 3b /2016
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Podstawy automatyki I Wykład /2016
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Zapis prezentacji:

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1 Linearyzacja Modele liniowe powstają też w wyniku linearyzacji nieliniowych modeli zarówno wejście – wyjście jak i przestrzeni stanu w otoczeniu tzw. trajektorii nominalnej Weźmy nieliniowy niestacjonarny model przestrzeni stanu - równanie stanu - równanie wyjścia gdzie - stan - wejście - wyjście - funkcje różniczkowalne w sposób ciągły względem swoich argumentów Skupimy się najpierw na modelach przestrzeni stanu

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania2 Trajektorię nominalną określa się w następujący sposób: Definicja trajektorii nominalnej: Dla nominalnego sygnału wejścia nominalna trajektoria stanu spełnia równanie stanu i nominalna trajektoria wyjścia spełnia równanie wyjścia

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania3 Jeżeli nominalna trajektoria wejścia jest stała trajektoria stanu jest stanem równowagi,, który dla wszystkich spełnia równanie Podobnie nominalna trajektoria wyjścia staje się trajektorią stałą, która spełnia równanie

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania4 Odchylenia stanu ( w tym stanu początkowego), wejścia i wyjścia od ich trajektorii nominalnych (równowagi) oznaczymy Rozwijamy funkcję w szereg Taylora w otoczeniu wartości nominalnych Ograniczymy się na tym wykładzie tylko do tego drugiego przypadku Korzystając z powyższych oznaczeń – równanie stanu

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania5 Z definicji trajektorii nominalnej, w szczególności trajektorii równowagi, stanu i zakładając, że warunki zaniedbania reszty z wyrazów wyższych rzędów są spełnione Zlinearyzowane równanie stanu

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania6

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania7 Zlinearyzowane równanie stanu

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania8 Podobnie dla równania wyjścia Rozwijamy funkcję w szereg Taylora w otoczeniu wartości nominalnych Z definicji trajektorii nominalnej wyjścia

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania9 i zakładając, że warunki zaniedbania reszty z wyrazów wyższych rzędów są spełnione Zlinearyzowane równanie wyjścia

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania10

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania11 Zlinearyzowane równanie wyjścia

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania12 Model szczególny trajektorii nominalnych – stała trajektoria wejścia, trajektoria stanu = stan równowagi Model zlinearyzowany w otoczeniu stanu równowagi

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania13 Przykład 5a Linearyzacja modelu stanu SPS z przykładu 4 a) wskazanie równowagowej trajektorii nominalnej – trajektorii równowagi Wykazanie, że istnieją rozwiązania układu równań Układ 3 równań algebraicznych nieliniowych z 6 niewiadomymi Zakładamy: Obliczamy:

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania14 Nietrudno pokazać, że takie rozwiązania istnieją, np.

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania15 b) obliczenie macierzy stanu A

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania16 c) obliczenie macierzy wejścia B

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania17 d) zlinearyzowane równanie stanu

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania18 e) obliczenie macierzy wyjścia C f) obliczenie macierzy bezpośredniego przejścia D

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania19 d) zlinearyzowane równanie wyjścia

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania20 Podsumowanie: - zlinearyzowane równanie stanu - zlinearyzowane równanie wyjścia

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania21 Podobnie można przedstawić linearyzację modeli wejście - wyjście Weźmy nieliniowy niestacjonarny model wejście - wyjście gdzie - wejście - wyjście - funkcje różniczkowalne w sposób ciągły względem swoich argumentów

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania22 Trajektorię nominalną określa się w analogiczny sposób: Definicja trajektorii nominalnej: Dla nominalnego sygnału wejścia nominalna trajektoria wyjścia modelu wejście - wyjście spełnia równanie: z warunkami początkowymi:

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania23 Jeżeli nominalna trajektoria wejścia jest stała nominalna trajektoria wyjścia jest stała,, i spełnia dla wszystkich równanie Z określenia trajektorii równowagi:

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania24 Odchylenia wejścia i wyjścia (i ich warunków początkowych) od ich trajektorii równowagi oznaczymy

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania25 Rozwijamy funkcję w szereg Taylora w otoczeniu wartości nominalnych Korzystając z powyższych oznaczeń – równanie wejście - wyjście Biorąc pod uwagę

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania26 i zakładając, że warunki zaniedbania reszty z wyrazów wyższych rzędów są spełnione Zlinearyzowane równanie wejście - wyjście

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania27

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania28

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania29

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania30

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania31

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania32

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania33 Zlinearyzowane równanie wejście - wyjście

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania34 Przykład 5b Linearyzacja modelu stanu SPS z przykładu 4 Musimy policzyć M (1), M (0) oraz N (0)

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania35

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania36

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania37

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania38 Podsumowanie: - zlinearyzowane równanie wejście – wyjście: postać macierzowa - zlinearyzowane równanie wejście – wyjście: postać zwykła

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania39 Kategorie otrzymanego modelu parametryczny dynamiczny ciągły liniowy o parametrach skupionych stacjonarny deterministyczny

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania40 Modyfikacje modelu podsystemu mechanicznego Moment oporowy dzielony często na dwie części: wewnętrzny – opory strat samego wirnika zewnętrzny – od urządzenia napędzanego Zasadnicza składowa momentu oporowego wewnętrznego – moment oporowy tarcia lepkiego Równanie momentu oporowego przyjmie w takim przypadku postać: Gdyby interesowało nas położenie wału silnika wyprowadzone modele należy uzupełnić o gdzie, D – współczynnik tarcia lepkiego gdzie, Θ – położenie kątowe wału silnika

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania41 Dziękuję – koniec materiału prezentowanego podczas wykładu Inne przykłady modeli – Dodatek A

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania42 Dodatek A Systemy mechaniczne – przykładowe modele Przykład D-1

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania43

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania44

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania45 Przykład D-2

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania46

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania47 Przykład D-3

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania48

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania49

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania50 Przykład D-4 Systemy elektryczne – przykładowe modele

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania51

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania52 Przykład D-5

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania53 Przykład D-6

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania54

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania55 Z drugiego z ostatnich równańPodstawiając do pierwszego i porządkując otrzymamy

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania56 Ustalanie warunków początkowych – przykłady: systemy elektryczne W dotychczas przedstawionych przykładach nie skupialiśmy uwagi na określaniu wartości warunków początkowych dla otrzymywanych r.r. modelu, gdyż w przykładach tych ich określenie nie powinno nastręczać trudności. Spotkać można jednak zadania w których określenie warunków początkowych wymaga pewnego skupienia. Podamy przykłady takich zadań zaczerpnięte z elektrotechniki

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania57 Przydatne przy określaniu warunków początkowych wskazówki Przypomnijmy zależności wiążące wartości napięcia i prądu na podstawowych elementach układów elektrycznych - możliwa skokowa zmiana prądu - możliwa skokowa zmiana napięcia - możliwa skokowa zmiana prądu - niemożliwa skokowa zmiana napięcia

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania58 - możliwa skokowa zmiana napięcia - niemożliwa skokowa zmiana prądu

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania59 Przykład WP-1 Do zacisków układu podłączone jest napięcie u(t)=E. W chwili t=0 - tuż przed przełączeniem przełącznika P, w obwodzie panuje stan ustalony. W chwili t = 0 zostaje przełączony przełącznik P zgodnie ze strzałką na rysunku. Zbudować model matematyczny pozwalający badać zależność przebiegu napięcia na kondensatorze C oraz prądu pobieranego ze źródła

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania60 Model systemu Potrzebne warunki początkowe Dla wejściowego oczka, dla każdej chwili t

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania61 W szczególności Stąd oraz

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania62 Prąd i nie może zmienić się skokowo (nagle) a jego wartość jest równa Mamy Dalej

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania63 Zatem i ostatecznie

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania64 Przykład WP-2 Do zacisków układu podłączone jest napięcie u(t)=E. W chwili tuż przed wyłączeniem (t=0 - ) wyłącznika W w obwodzie panował stan ustalony. W chwili t = 0 zostaje wyłączony wyłącznik W. Zbudować model matematyczny pozwalający badać zależność przebiegu napięcia na zaciskach wyłącznika u w (t) przy zadanym napięciu u(t)

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania65 Model systemu Potrzebne warunki początkowe Napięcie na kondensatorze nie może się skokowo zmienić, więc

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania66 Napięcie na wyłączniku Równanie spójności dla wejściowego oczka, dla chwil przed wyłączeniem Stąd

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania67 Mamy zależność Ponieważ oraz

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania68 Stąd Ponieważ Stąd

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania69 Przykład WP-3 Do zacisków układu podłączone jest napięcie u(t)=E. W chwili tuż przed wyłączeniem (t=0 - ) wyłącznika W w obwodzie panował stan ustalony. W chwili t = 0 zostaje wyłączony wyłącznik W. Zbudować model matematyczny pozwalający badać zależność przebiegu napięcia na zaciskach odbiornika R o przy zadanym napięciu u(t)

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania70 Model systemu Oczywiście, dla t>0 Potrzebne warunki początkowe

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania71 Ponieważ napięcie na kondensatorze nie może się nagle zmienić Z stanu ustalonego przed załączeniem wynika Dla znalezienia drugiego warunku początkowego Z równania dla węzła

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania72 Prąd w cewce nie może zmienić się skokowo, więc Stąd Zatem

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania73 Systemy hydrauliczne – przykładowe modele

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania74 Przykład D-7

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania75

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania76 Przykład D-8

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania77

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania78 Przykład D-9

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania79

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania80