Trójkąty.

Slides:



Advertisements
Podobne prezentacje
KLASYFIKACJA TRÓJKĄTÓW ZE WZGLĘDU NA BOKI I KĄTY
Advertisements

Opracowała: Maria Pastusiak
Sandra Michalczuk Karolina Kubala Agata Ostrowska Anna Wejkowska
TRÓJKĄTY Karolina Szczypta.
Figury płaskie-czworokąty
Wielokąty i okręgi.
KLASYFIKACJA TRÓJKĄTÓW Asia Niemiro klasa IIa gim.
WIELOKĄTY I OKRĘGI Monika Nowicka.
Okręgiem o środku O i promieniu r nazywamy zbiór punktów płaszczyzny, których odległości od punktu O są równe r r - promień okręgu. r O O - środek.
Klasyfikacja Trójkątów. Klasyfikacja trójkątów..
Trójkąty Wykonali: Michał Płaza i Kacper Jackiewicz.
CZWOROKĄTY Patryk Madej Ia Rad Bahar Ia.
Trójkąty.
Czworokąty Wykonał: Tomek J. kl. 6a.
PODRÓŻE W KRAINIE TRÓJKĄTÓW
Spis treści : Definicja trójkąta Definicja trójkąta Definicja trójkąta Definicja trójkąta Własności Własności Własności Podział trójkątów ze względu na.
materiały dydaktyczne dla klasy piątej
TRÓJKĄTY I ICH WŁASNOŚCI
TRÓJKĄTY.
Figury płaskie.
WIELOKĄTY PRZYKŁADY WIELOKĄTÓW TRÓJKĄTY CZWOROKĄTY WIELOKĄTY FOREMNE.
„Własności figur płaskich” TRÓJKĄTY
Krótki kurs geometrii płaszczyzny
,, W KRAINIE CZWOROKĄTÓW ,, Adam Filipowicz VA SPIS TREŚCI
Trójkąty - ich właściwości i rodzaje
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Co to jest trójkąt? Podział trójkątów. Pojęcia związane z trójkątami. Wybrane trójkąty i ich własności. Przystawanie trójkątów. Twierdzenie Pitagorasa.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Trójkąty.
Jaki kąt nazywamy kątem ostrym ?
TRÓJKĄTY Opracowała: Renata Pieńkowska.
Trójkąty.
Podstawowe własności trójkątów
Opracował: Piotr Bożek
TRÓJKĄTY Autor: Anna Mikuć START.
KLASYFIKACJA TRÓJKĄTÓW
Opracowała: Iwona Kowalik
Opracowała: Iwona Kowalik
Rodzaje trójkątów Opracowała: Mariola Grzybowska.
Trójkąty Co to jest? Jakie ma własności i wzory?
Przypomnienie wiadomości o figurach geometrycznych.
WŁASNOŚCI FIGUR PŁASKICH
Własności Figur Płaskich
KLASYFIKACJA TRÓJKĄTÓW
WŁASNOŚCI FIGUR GEOMETRYCZNYCH
FIGURY PŁASKIE Autorzy: Agata Kwiatkowska Olga Siewiorek kl. I a Gimnazjum Nr 2 w Trzebini.
Możesz kliknąć na odnośnik. Aby wyjść naciśnij Esc
Podział trójkątów ze względu na boki i kąty.
Trójkąty i ich własności Michał Kassjański Konrad Zuzda.
Okrąg opisany na trójkącie. Okrąg wpisany w trójkąt
Pola i obwody figur płaskich.
Najważniejsze twierdzenia w geometrii
Opracowała: Marta Bożek
Autor: Marcin Różański
Trójkąty Katarzyna Bereźnicka
WIELOKĄTY Karolina Zielińska kl.v Aleksandra Michałek kl v
Co to jest wysokość?.
Opracowanie Joanna Szymańska Konsultacja Bożena Hołownia.
Definicje Fot: sxc.hu, wyszukano r.
WSZYSTKO CO POWINIENEŚ O NICH WIEDZIEĆ…
FIGURY PŁASKIE.
Figury płaskie.
Wielokąty wpisane w okrąg
Figury geometryczne.
Okrąg opisany na trójkącie.
Matematyka czyli tam i z powrotem…
Okrąg wpisany w trójkąt.
Rodzaje i własności trójkątów
Opracowała : Ewa Chachuła
opracowanie: Ewa Miksa
Zapis prezentacji:

Trójkąty

Rodzaje trójkątów Dowolny Ostrokątny Rozwartokątny Równoramienny Równoboczny Prostokątny

Podział trójkątów ze względu na boki różnoboczny (dowolny) Każdy bok ma inną długość i każdy kąt ma inną miarę. równoramienny Ma dwa boki równe i nazywamy je ramionami. Trzeci bok to podstawa. Kąty przy podstawie mają tę samą miarę. równoboczny Wszystkie boki ma równej długości. Wszystkie kąty wewnętrzne są równe i mają po 60°.

Podział trójkątów ze względu na kąty Ostrokątny α < 90° β < 90° δ < 90° Każdy kąt wewnętrzny jest kątem ostrym. Prostokątny C = 90°, α < 90° i β < 90° Ma jeden kąt prosty ,a dwa pozostałe są ostre i takie ,że α + β = 90° Rozwarty β > 90° Ma jeden kąt rozwarty ,a dwa pozostałe są ostre

Trójkąt jest wielokątem o trzech bokach Suma miar kątów wewnętrznych trójkąta jest równa 180°. α + β + δ = 180°.

Wysokości trójkąta Wysokością trójkąta nazywamy odcinek poprowadzony z wierzchołka trójkąta prostopadle do przeciwległego boku lub do przedłużenia tego boku. Każdy trójkąt ma trzy wysokości, które przecinają się w jednym punkcie zwanym ortocentrum (p.O).

Środkowe boków trójkąta Środkową boku trójkąta nazywamy odcinkiem łączącym środek tego boku z przeciwległym bokiem tego trójkąta. Każdy trójkąt ma trzy środkowe przecinające się w jednym punkcie (p.S), który nazywamy środkiem ciężkości tego trójkąta. |DS| = |CD|, |ES| = |AE| oraz |FS| = |BF|

Odcinki łączące środki boków trójkąta Odcinki łączące środki boków trójkąta są równoległe do przeciwległych boków i równe ich połowie.

Dwusieczne kątów trójkąta Dwusieczna kąta jest to półprosta dzieląca kąt na połowy. Każdy trójkąt ma trzy dwusieczne przecinające się w jednym punkcie (p.O), który jest środkiem koła wpisanego w trójkąt.

Symetralne boków trójkąta Symetralną boku trójkąta nazywamy prostą prostopadłą do tego boku, przechodzącą przez Jego środek. Każdy trójkąt ma trzy symetralne boków, przecinające się w jednym punkcie (p.O), który jest środkiem koła opisanego na tym trójkącie Środek O koła opisanego na trójkącie może leżeć wewnątrz lub na zewnątrz trójkąta, a w przypadku trójkąta prostokątnego na Jego boku (w połowie przeciwprostokątnej). Trójkąty nie mają środka symetrii.

Trójkąt równoramienny ma jedną oś symetrii i jest ona jednocześnie dwusieczną kąta (δ) zawartego między ramionami oraz pokrywa się z wysokością figury, symetralną i środkową podstawy

Trójkąt równoboczny ma trzy osie symetrii, które są jednocześnie dwusiecznymi kątów, wysokościami, symetralnymi i środkowymi boków figury.

TWIERDZENIE PITAGORASA Jeżeli trójkąt jest prostokątny, to suma kwadratów długości przyprostokątnych jest równa kwadratowi długości przeciwprostokątnej. a2 + b2 = c2 TWIERDZENIE ODWROTNE DO TWIERDZENIA PITAGORASA Jeżeli w trójkącie o bokach długości a, b i c zachodzi równość a2 + b2 = c2, to trójkąt jest prostokątny.

OKRĄG OPISANY NA TRÓJKACIE Na każdym trójkącie można opisać okrąg. Środkiem okręgu opisanego jest punkt przecięcia się symetralnych boków trójkąta.

Trójkąt prostokątny Środek okręgu opisanego na trójkącie prostokątnym leży w połowie przeciwprostokątnej.

Trójkąt równoboczny Środek okręgu opisanego na trójkącie równobocznym i środek okręgu wpisanego w trójkąt równoboczny pokrywają się.

CECHY PODOBIEŃSTWA TRÓJKĄTÓW Własność, która pozwala na określenie podobieństwa pewnej rodziny figur, nazywa się cechą podobieństwa figur tej rodziny. Wyróżniamy trzy cechy podobieństwa trójkątów:

I CECHA Jeżeli dwa kąty jednego trójkąta są przystające do odpowiednich kątów drugiego trójkąta, to trójkąty te są podobne. α1 = α2 oraz β1 = β2

II CECHA Jeżeli stosunki wszystkich boków jednego trójkąta do odpowiednich boków drugiego trójkąta są równe, to trójkąty są podobne.

III CECHA Jeżeli stosunki dwóch boków jednego trójkąta do odpowiednich boków drugiego trójkąta są równe oraz kąty zawarte między tymi bokami są przystające (równe), to trójkąty te są podobne. oraz α1 = α

Julita Spirka PRZYGOTOWAŁA Klasa 3 c gim.

KONIEC