FIZYKOCHEMICZNE WŁAŚCIWOŚCI GLEB

Slides:



Advertisements
Podobne prezentacje
stany skupienia materii
Advertisements

KWASY Kwas chlorowodorowy , kwas siarkowodorowy , kwas siarkowy ( IV ), kwas siarkowy ( VI ), kwas azotowy ( V ), kwas fosforowy ( V ), kwas węglowy.
Sodu, potasu, magnezu, wapnia, glinu, żelaza i miedzi.
Sole Np.: siarczany (VI) , chlorki , siarczki, azotany (V), węglany, fosforany (V), siarczany (IV).
SOLE to związki chemiczne o wzorze ogólnym: MR
EN ISO 8044:1999 Korozja metali i stopów – Podstawowa terminologia i definicje Korozja to fizykochemiczne oddziaływanie między środowiskiem i metalem,
FIZYKOCHEMICZNE WŁAŚCIWOŚCI GLEB
Degradacja gleb wywołana działalnością antropogeniczną- przekształcenia chemiczne: Obniżenie zawartości przyswajalnych dla roślin składników pokarmowych.
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Mangan (Mn).
TERMOCHEMIA.
UKŁADY DYSPERSYJNE GLEB KOLOIDY GLEBOWE Faza stała – związki mineralne, minerały pierwotne - minerały wtórne Faza płynna – wodne roztwory rzeczywiste.
Wykład GRANICE FAZOWE.
DYSOCJACJA JONOWA KWASÓW I ZASAD
Chemia stosowana I temat: utlenianie i redukcja.
Wodorotlenki i kwasy.
Równowagi chemiczne.
Reakcje utlenienia i redukcji
Reakcje w roztworach wodnych – hydroliza
Przed wyborem stacji uzdatniania wody
Budowa, właściwości, Zastosowanie, otrzymywanie
Budowa, otrzymywanie Zastosowanie, właściwości
BUDOWA, OTRZYMYWANIE, WŁAŚCIWOŚCI I ZASTOSOWANIE
Materiał edukacyjny wytworzony w ramach projektu „Scholaris - portal wiedzy dla nauczycieli” współfinansowanego przez Unię Europejską w ramach Europejskiego.
Prezentacja semestralna – semestr trzeci
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Hydroliza soli oraz jej przykłady
Hydroliza Hydrolizie ulegają sole:
Materiał edukacyjny wytworzony w ramach projektu „Scholaris - portal wiedzy dla nauczycieli” współfinansowanego przez Unię Europejską w ramach Europejskiego.
przewodnictwo elektryczne roztworów,
KWASY NIEORGANICZNE POZIOM PONADPODSTAWOWY Opracowanie
Reakcje w roztworach wodnych – indykatory kwasowo-zasadowe, Reakcje zobojętniania, Reakcje strącania osadów soli.
Wędrówka jonów w roztworach wodnych
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski 1 informatyka +
Kwasy Będę potrafił/a: definiować pojęcie: kwasu;
MINERAŁY ILASTE.
Badanie wód jezior lobeliowych
Związki kompleksowe.
Kwasy.
Berylowce - Ogólna charakterystyka berylowców Właściwości berylowców
Amidy kwasów karboksylowych i mocznik
Jaką masę ma cząsteczka?
Wodorotlenki.
Reakcje utlenienia i redukcji
Klaudia Dropińska Anna Morawska kl.IIF
Wodorotlenki i zasady -budowa i nazewnictwo,
Żelazo i jego związki.
Wodór i jego właściwości
Chrom i jego związki Występowanie chromu i jego otrzymywanie,
Czynniki decydujące o mocy kwasów Moc kwasów beztlenowych Moc kwasów tlenowych Zasady Amfotery.
Zestawienie wiadomości o solach - podział soli - otrzymywanie soli - wybrane właściwości soli.
Dysocjacja jonowa, moc elektrolitu -Kwasy, zasady i sole wg Arrheniusa, -Kwasy i zasady wg teorii protonowej Br ӧ nsteda i Lowry`ego -Kwasy i zasady wg.
KONDUKTOMETRIA. Konduktometria polega na pomiarze przewodnictwa elektrycznego lub pomiaru oporu znajdującego się pomiędzy dwiema elektrodami obojętnymi.
Podział kwasów Rozkład mocy kwasów Otrzymywanie kwasów
Kwasy i zasady - Kwasy i zasady wg Arrheniusa
Zestawienie wiadomości wodorotlenkach
Który gaz ma najmniejszą gęstość?
Reakcje w roztworach wodnych – hydroliza soli
związki wodoru z metalami - wodorki, związki wodoru z niemetalami
Woda – jedno słowo, tyle znaczeń.
Zasadowe wodorki metali Obojętne związki wodoru z niemetalami
Analiza jakościowa w chemii nieorganicznej – kationy
Wiązania chemiczne.
Materiał edukacyjny wytworzony w ramach projektu „Scholaris - portal wiedzy dla nauczycieli” współfinansowanego przez Unię Europejską w ramach Europejskiego.
Wskaźniki kwasowo - zasadowe i pozostałe wskaźniki
Metody otrzymywania soli
Amidy kwasów karboksylowych i mocznik
Aminokwasy amfoteryczny charakter aminokwasów,
Zapis prezentacji:

FIZYKOCHEMICZNE WŁAŚCIWOŚCI GLEB

ODCZYN GLEB H2O = H+ + OH- Odczyn gleby wyraża się wartością pH Odczyn jest określany przez stosunek jonów wodorowych, H+, do jonów wodorotlenowych OH-, na które dysocjuje woda: H2O = H+ + OH- W wodzie destylowanej [H+] = [OH-] = 10-7 mol/dm3. Odpowiada to odczynowi obojętnemu. Wzrost stężenia jonów [H+] (spadek [OH-]) powoduje, że roztwór staje się kwaśny. Wzrost stężenia jonów [OH-] (spadek [H+]) powoduje, że roztwór staje się zasadowy. Odczyn gleby wyraża się wartością pH pH = -log [H+] roztwory kwaśne – pH < 7 roztwory obojętne – pH = 7 roztwory zasadowe – pH > 7

Zakres pH spotykany w większości gleb mineralnych

ODCZYN GLEB – cd. W Polsce przeważają gleby o odczynie kwaśnym; gleby kwaśne i bardzo kwaśne zajmują 50% powierzchni kraju, gleby słabo kwaśne – 30%, gleby obojętne i zasadowe – 20%.

KWASOWOŚĆ I ZASADOWOŚĆ GLEB Kwasowość – stan gleby, w którym jej odczyn jest kwaśny 1. Kwasowość czynna – pochodzi od jonów H+ roztworu glebowego 2. Kwasowość potencjalna – pochodzi od jonów H+ i Al3+ zaadsorbowanych przez koloidy glebowe kwasowość wymienna – ujawnia się w glebach po potraktowaniu ich roztworami soli obojętnych - KCl kwasowość hydrolityczna - ujawnia się w glebach po potraktowaniu ich roztworami soli hydrolizujących zasadowo – (CH3COO)2Ca

KWASOWOŚĆ I ZASADOWOŚĆ GLEB – cd. Al3+ K+ K+ Al3+ K+ Gleba + 8KCl Gleba +2AlCl3 + 2HCl K+ H+ K+ H+ K+ K+ H+ Gleba + (CH3COO)2Ca Ca2+ Gleba + 2CH3COOH H+

BUFOROWE WŁAŚCIWOŚCI GLEBY Właściwości buforowe gleby - zdolność gleby do przeciwstawiania się zmianie odczynu

SORPCYJNE WŁAŚCIWOŚCI GLEB Sorpcja – powierzchnia ciała stałego (gleby) przyciąga i zatrzymuje warstwę jonów, atomów lub molekuł. Za zdolności sorpcyjne gleby odpowiada kompleks sorpcyjny zbudowany z koloidów glebowych: minerały ilaste (smektyty, wermikulit, illit, kaolinit) krystaliczne i amorficzne tlenki żelaza i glinu minerały bezpostaciowe próchnica kompleksy ilasto-próchnicze

Dzięki właściwościom sorpcyjnym gleby możliwe jest: regulacja w nich odczynu magazynowanie dostarczanych w nawozach składników pokarmowych roślin neutralizacja szkodliwych dla organizmów żywych substancji, które dostają się do gleby

Rodzaje sorpcji w glebie: Wymiana jonowa – jon z roztworu wymienia (zastępuje) jon z powierzchni lub struktury ciała stałego Sorpcja chemiczna – powstawanie na powierzchni gleby trwałych wiązań chemicznych (kompleksów) między sorbentem a sorbatem Sorpcja fizyczna – zagęszczanie na powierzchni cząstek gleby molekuł innych ciał (cieczy, gazów) wskutek działania sił van der Waalsa Sorpcja biologiczna – pobieranie i zatrzymywanie jonów z roztworu przez organizmy żywe

Przyczyną wymiany jonowej i sorpcji chemicznej są nie skompensowane ładunki elektryczne występujące na powierzchni koloidów glebowych. Źródłem tych ładunków są: Niewysycone wiązania (wartościowości) występujące na krawędziach i zewnętrznych płaszczyznach minerałów ilastych (pakietów) oraz cząstkach próchnicy. Są to ładunki zmienne ponieważ ich wielkość zmienia się wraz z odczynem gleby. Wewnątrzwarstwowa wymiana w kryształach minerałów ilastych. Są to ładunki trwałe ponieważ ich wielkość nie zależy od pH. Zmienne pH roztworów glebowych (pHZPC) – w przypadku koloidów glebowych z grupy wodorotlenków Fe i Al

Ładunki zmienne – minerały ilaste Ładunki trwałe – minerały ilaste

Ładunki zmienne – próchnica

pHZPC

Jednym z najważniejszych rodzajów sorpcji na koloidach glebowych jest wymiana jonowa. Polega ona na tym, że jon z roztworu glebowego wymienia (zastępuje) jon z powierz-chni lub struktury koloidu glebowego. Wymianie jonowej ulegają przede wszystkim kationy – sorpcja wymienna kationów (cation exchange) a zdecydowanie w mniejszym stopniu aniony – sorpcja wymienna anionów (anion exchange). Najczęściej spotykanymi kationami w glebach są: Ca2+, Mg2+, K+, Na+, NH4+ - kationy o charakterze zasadowym H+, Al3+ - kationy o charakterze kwasowym

SORPCJA WYMIENNA KATIONÓW Ca+2 Kationy wymienne Ca+2 Ca+2 Ca+2 K+ - - - - - - - - - - - - - - - - - Ca+2 H+ K O L O I D H+ Ca+2 Al+3 Mg+2 Mg+2 Mg+2 Ca+2 K+ K+ K+ H+ Mg+2 Ca+2 Ca+2 Al+3 H+ Al+3

cmol(+)/kg = 0,01 M/kg = 10mM/kg Miarą pojemności wymiany kationów (CEC) i anionów (AEC) jest mM/kg Inne, stosowane, jednostki pojemności wymiany jonów: cmol(+)/kg = 0,01 M/kg = 10mM/kg mval/kg = mM/kgwartościowość pierwiastka

Rozmiary wymiany kationów w glebie zależą od: składu mineralnego sorbentu i wielkości jego ziaren, rodzaju sorbowanego kationu i jego stężenia, rodzaju towarzyszącego anionu, pH roztworu, temperatury,

Wpływ składu mineralnego gleby na wielkość jej pojemności sorpcyjnej Pojemność sorpcyjna niektórych składników gleb [cmol(+)/kg] Składnik CEC kaolinit 3-15 chloryt 10-40 haloizyt 5-10 alofan 100 montmorillonit 80-120 uwod. tl. Fe i Al 4 wermikulit 100-200 illit 20-50 próchnica 150-250

Wpływ rodzaju kationu na sorpcję wymienną zależy od wartościowości, wielkości i stopnia uwodnienia kationów Wraz ze wzrostem wartościowości kationów wzrasta ich zdolność wymienna. Generalnie zgodnie ze schematem: Li+ < Na+ < NH4+ = K+ < Mg2+ < Ca2+ < Al3+ < Fe3+ < H+ Zdolność wymienna jonów o tej samej wartościowości zależy od wielkości ich średnic. Kation tym chętniej wchodzi do kompleksu sorpcyjnego, im większa jest jego średnica. Im większa jest średnica jonów, tym słabsze jest pole elektryczne przez nie wytwarzane - mniejszy stopień ich uwodnienia. Wraz ze wzrostem średnicy jonów uwodnionych mniej chętnie wchodzą one do kompleksu sorpcyjnego gleby.

Wpływ rodzaju towarzyszącego anionu na wielkość wymiany kationu Sorpcja niektórych kationów wielowartościowych może zależeć od rodzaju towarzyszących anionów. Kationy te zachowują się jak jednowartościowe, przy czym nad-miar ładunku jest neutralizowany przez towarzyszące aniony, takie jak: OH-, Cl- i NO3-. W ten sposób są sorbowane kationy: CuCl+, ZnCl+, FeOH2+, Fe(OH)2 i Al(OH2)2+.

Wpływ pH na wielkość sorpcji Cr(III) Sorpcja Cr(III) [%] pH

Pojemność sorpcyjną gleby (CEC) oblicza się wyznaczając sumę kationów metali o charakterze zasadowym (Ca, Mg, Na, K) i jonów wodoru znajdujących się w kompleksie sorpcyjnym gleby. Dokonuje się tego poprzez potraktowanie próbki gleby roztworem zawierającym 1M NH4+ i oznaczenie w roztworze po reakcji zawartości Ca, Mg, Na i K oraz pH, które jest miarą zawartości jonów H+. Wyznaczona w ten sposób wartość CEC nazywana jest pojemnością całkowitą. Pojemność potencjalną wyznacza się traktując próbkę na przykład roztworem zawierającym 1M Mg2+ w celu wysycenia wszystkich potencjalnych pozycji wymiennych a następnie desorbuje się magnez roztworem zawierającym 1M Ba2+ lub 1M NH4+.

Przykłady wartości CEC Bielica Gleba brunatna Rędzina 50 mM / kg 120 mM / kg 240 mM / kg