Zakład XII Struktury hadronów Instytutu Fizyki Jądrowej im. Henryka Niewodniczańskiego w Krakowie Nasz cel: badanie fundamentalnych oddziaływań podstawowych.

Slides:



Advertisements
Podobne prezentacje
Session 6 Case Study – Elektrim SA Saturday, January 15, 2011 SAL Wroclaw Lectures on Corporate Governance Geoffrey Mazullo Principal Emerging Markets.
Advertisements

G.Broda Helsinki 20-22, September 2010
Projekt Do kariery na skrzydłach – studiuj Aviation Management Projekt współfinansowany ze ś rodków Europejskiego Funduszu Społecznego. Biuro projektu:
Statistics – what is that? Statystyka dla gimnazjalistów.
Fundamentals of Data Analysis Lecture 5 Testing of statistical hypotheses pt.2.
Projekt Do kariery na skrzydłach – studiuj Aviation Management Projekt współfinansowany ze ś rodków Europejskiego Funduszu Społecznego. Biuro projektu:
Projekt Do kariery na skrzydłach – studiuj Aviation Management Projekt współfinansowany ze ś rodków Europejskiego Funduszu Społecznego. Biuro projektu:
Projekt Do kariery na skrzydłach – studiuj Aviation Management Projekt współfinansowany ze ś rodków Europejskiego Funduszu Społecznego. Biuro projektu:
Projekt Do kariery na skrzydłach – studiuj Aviation Management Projekt współfinansowany ze ś rodków Europejskiego Funduszu Społecznego. Biuro projektu:
Sun altitude Made by: Patryk Cichy Patryk Cichy Mateusz Dąbrowicz Mateusz Dąbrowicz Mariusz Król Mariusz Król Mariusz Dyrda Mariusz Dyrda Group leader:
Nadprzewodniki na bazie żelaza FeSe i LiFeP
Wstęp do geofizycznej dynamiki płynów. Semestr VI. Wykład
Saint Nicolaus.
Copyright for librarians - a presentation of new education offer for librarians Agenda: The idea of the project Course content How to use an e-learning.
Software Engineering 0. Information on the Course Leszek J Chmielewski Faculty of Applied Informatics and Mathematics (WZIM) Warsaw University of Life.
Team Building Copyright, 2003 © Jerzy R. Nawrocki Requirements Engineering Lecture.
Dzielenie relacyjne / Relational Division
JET PUMPS introduction POMPY STRUMIENIOWE wstęp
Ministerstwo Gospodarki Poland'sexperience Waldemar Pawlak Deputy Prime Minister, Minister of Economy March 2010.
Nadprzewodniki na bazie żelaza
Superconducting FeSe studied by Mössbauer spectroscopy
Polaryzacja światła.
„Accidentally in love”
Jacek Dobaczewski Reading materials: Jacek Dobaczewski:2004 RIA Summer School Jacek Dobaczewski:2005.
POLSKA SZKOŁA PODSTAWOWA IM. LECHA BĄDKOWSKIEGO W LUZINIE
DIRECT &INDIRECT QUESTIONS
Neutrino-induced quasielastic scattering Luis Alvarez-Ruso TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A AAAA A A.
Projekt "Zagraniczna mobilność szkolnej kadry edukacyjnej w ramach projektów indywidualnych współfinansowany przez Unię Europejską w ramach środków Europejskiego.
XXVII Liceum Ogólnokształcące im. Tadeusza Czackiego w Warszawie easy - creative - effective ICT in Czacki | Marcin Stanowski | XXVII LO im T. Czackiego.
Tadeusz Janasiewicz IT Group, Tadeusz Janasiewicz, WSUS, IT Group, r.
YOUR PARTNER IN WIND ENERGY PROJECTS
Contents About Kujawiak dance About Kuyavia S. Strzeleckis Kujawiak notes Kuyavias coat of arms Song Quiz.
Kosmologia realistyczna Marek Kutschera 05 V 2009 IPJ.
United Kingdom.
In the mobile showroom. Excuse me. Welcome, sir!
______________________________________ TARGU-JIU 2010.
INAUGURACYJNE POSIEDZENIE ZARZĄDU SEKCJI FENS PTF Wydział Fizyki Politechniki Warszawskiej Warszawa 08 maja 2004 r.
Theory of Computer Science - Basic information
Comenius The Great Wonders of Europe The Polish school is called … is called …
- For students (12 questions) - For parents (6 questions) - For grandparents (6 questions)
REGIONALNE CENTRUM INFORMACJI I WSPOMAGANIA ORGANIZACJI POZARZĄDOWYCH REGIONAL INFORMATION and SUPPORT CENTER for NGOs EVALUATION V BALTIC SEA NGO FORUM.
TVP SA Odział w Łodzi Łódź ul. Narutowicza 13 TVP Łódź the Year of anniversary – it is already 55 years together.
BLOOD DONATION.
Click to show the screen.
The educational project: „ HIGH SCHOOL EXAM - WE WILL BE ABLE!”
POLAND. we will take you on a journey during which you will learn something about us.
Wacław Sierpiński.
Stakeholder Analysis Lazarski University May, 2011 Edward T. Jennings, Jr. University of Kentucky Martin School of Public Policy and Administration.
Uczenie w sieciach Bayesa
I L.O. im. Mikołaja Kopernika in Bielsko-Biała The following presentation has been created within the confines of Socrates- Comenius Programme Teaching.
Teksty prymarne (original texts) to teksty autentyczne, nie są przeznaczone dla celów dydaktycznych; teksty adaptowane (simplified/adapted texts)są przystosowane.
Preface 2.General characteristics of the problem 3.Classical and non-classical approaches 4.Griffith-Irwin concept and linear fracture mechanics.
NEW MODEL OF SCHOOL HEADS PREPARATION, INDUCTION AND CONTINUING PROFESSIONAL DEVELOPMENT IN POLAND Roman Dorczak, Grzegorz Mazurkiewicz   Jagiellonian.
Old quantum theory New quantum theory Fizyka klasyczna - Mechanika klasyczna – prawa Newtona - Elektrodynamika – prawa Maxwella - Fizyka statystyczna.
Introduction to Numerical Analysis
Justyna Ukleja Uniwersytet Warszawski Warszawa, 5 listopad 2004.
Cracow University of Technology Faculty of Mechanical Engineering Internships programmes at CERN Seminar Piotr Dziurdzia.
I am sorry, but I can’t go out with you
legend
The legend of amber Reda, Poland 2010.
X Ogólnopolskie Seminarium Spektroskopii Mössbauerowskiej OSSM’2014
INSTYTUT METEOROLOGII I GOSPODARKI WODNEJ INSTITUTE OF METEOROLOGY AND WATER MANAGEMENT THE USE OF COSMO LM MODEL FOR AVIATION METEOROLOGICAL SERVICE IN.
NIEPUBLICZNA SZKOŁA PODSTAWOWA
Struktura przedsiębiorstwa SAP Best Practices. ©2014 SAP SE or an SAP affiliate company. All rights reserved.2 Obszar rachunku kosztów 1000 Dane te są.
POLISH FOR BEGINNERS.
2 Review What is bionomial nomenclature Explain What is a genus
CSIC 5011 Mini-Project 1:Principle Component Analysis on Finance Data
The Properties of Matter
Previously discusses: different kinds of variables
1.2.4 Hess’s Law.
Zapis prezentacji:

Zakład XII Struktury hadronów Instytutu Fizyki Jądrowej im. Henryka Niewodniczańskiego w Krakowie Nasz cel: badanie fundamentalnych oddziaływań podstawowych składników materii – kwarków i gluonów. Kierownik: prof. dr hab. Andrzej Eskreys 9 fizyków 7 inżynierów (elektronicy, informatycy, mechanicy) Uczestniczymy w następujących eksperymentach i projektach: Eksperyment ZEUS w laboratorium DESY w Hamburgu: badanie oddziaływań elektron (pozyton) – proton przy najwyższych energiach. ILC Project: Przygotowanie eksperymentu na planowanym akceleratorze ILC (International Linear Collider): badanie zderzeń elektron-pozyton przy energii 0.5 TeV. Piotr Stopa

HERA electron-proton collider electrons protons ZEUS H1 HERMES HERA-b 2 collider experiments ZEUS and H1 2 fixed target experiments HERMES and HERA-b HERA construction approved 1984 DESY laboratory in Hamburg, Germany 5.12x10 31 cm 2 s -1 after upgrade

: Civil Construction

Zeus Detector Complete 4π detector Tracking: - central tracking detector - Silicon μ-Vtx (operate in a B field of 1.43 T) Calorimeters: - uranium-scintillator (CAL) σ(E)/E=0.18/E [emc] σ(E)/E=0.35/E [had] - instrumented-iron (BAC) Muon chambers 18 countries, ~400 members Experiment approved 1986

First luminosity on May 31, first paper that September Control room in the mid-90s

HERA I: ~180 pb-1/experiment delivered. (mostly e + ) HERA II: ~580 pb-1/experiment delivered. (e + and e - ) Upgrade: For HERA II: - Luminosity ~x3 (low-β insertion) - Long. polarized leptons - Some running at lower proton energy: 460 and 575 GeV

June 30, 2007 ZEUS End-of-run party

Physics at HERA 920 GeV 27.5 GeV

1997

2003 After ~100 pb -1 of data --no excess. (similar results for H1) Limits were set: contact interactions

Summary from ~ TeV range limits from all three colliders Contact Interaction Limits

Extra-dimensions and quark radius limits (2007 results)

Channels where excesses at HERA were reported previously: No compelling indications of BSM in the total data set lepton + missing P T multi-leptons

Introduction: Deep Inelastic Scattering x = Q 2 /2p. q Described by 2 kinematic variables p Mostly about F 2

HERA Kinematic Limit In the early 90s, HERA was about to push the proton structure function measurements by 2 orders of magnitude in x and Q 2. Clearly, the first measurements would be in relatively low Q 2 and would extend to low x. What were the expectations? What would be the proton structure at low x?

HERA Kinematic Limit 0 1 pQCD Hadronic Predictions of F 2 Donnachie & Landshoff Gluck, Reya and Vogt Why such different predictions? Fixed target data

Quarks are asymptotically free! Proton is a beam of partons whose behavior can be understood using perturbative QCD! OR Protons are hadronswhose constituents are confined. The behavior of hadrons is not understood from the first principles of QCD: however we have relatively good phenomenology to describe them. pQCD Hadronic Two ways to think about the problem

Before HERA: hadronic view of the proton and F 2 F 2 at low x is simply related to the total γ*P cross-section. x Q 2 /W 2 so as x falls W rises small x limit of DIS is a large energy limit of the γ*p cross- section. at HERA W goes up to ~300 GeV. Large energy limit of total cross-sections is where the Pomeron trajectory dominates in Regge phenomenology: slow rise of the cross-section W(GeV) γpγp γγ hadron-hadron W: γ*P cms energy

Hadronic view of F 2 We do not understand how hadrons are formed and behave from first principles. We do, however, have a phenomenology that describes most of the properties of hadron-hadron collisions. (Regge) This is somehow the result of QCD in the strong coupling limit. Virtual-photon proton cross section (or F 2 at low x) is yet another total cross- section which should be dominated by the properties of the proton as a hadron governed by the same Pomeron trajectory as other hadronic cross-sections: slow power rise with W (or 1/x). Donnachie and Landshoff (1993) 1 0 F2F2

pQCD view of F 2 Asymptotic freedom! A proton at a high energy collider is a beam of partons. A proton knows itself as a proton only to the extent that the non- perturbative initial distributions of partons are somehow determined by the hadronic properties of the proton. The parton distributions at any Q 2 can be calculated via perturbative QCD given enough data to determine it at some Q 2. Factorization: (universal) parton densitiesPQCD cross-sec. x momentum frac. of parton Q 2 resolving power of probe

DGLAP evolution equations: P's are splitting functions: pQCD view of F 2 Q2Q2 resolution smaller x 0 1 F2F2 Evolution in Q 2 many gluons at low x Predict:

Measurements at HERA 0 1 F2F2 Early ZEUS data

smaller x resolution ( Q2 ) HERA measurements and pQCD Incr. Lines are pQCD fits to parton distributions.

Scaling violation of F 2 To LO:

Additional information: jets at HERA Jets can probe the gluon Jet measurements are consistent with NLO QCD fits from F 2 Can be used to further constrain the gluon and/or α s

a s measurement at HERA are as precise as those from LEP S. Bethke hep-ex/ HERA measurement (green triangles)

Charm and beauty

Proton is mostly gluons at low x Parton densities from ZEUS data W + production at LHC Predicts e.g.

Triumph of perturbative QCD A part of Wilczeks comments upon the Nobel Prize announcement gluon resolution

On the other hand… Has the hadronic proton completely vanished (only manifestation in the parton densities) ? Look for leading protons in the final state carries most of the beam momentum Peak! t is small If proton carries most of the beam momentum and t is small

Mass of X, Mx, must be small with respect to W X is far away in rapidity from the proton a rapidity gap …then Not color connection leads to particles in gap. color singlet No particles in the proton direction

η max, the most forward energy deposit ~10% of DIS events are rapidity gap events 1993

In the simplest interpretation 2 gluons in a color singlet state are exchanged: gluon taken out gluon put back small perturbation Proton stays intact: this process carries information about the proton wave function. Here, proton is behaving as a hadron! This is diffraction familiar from hadronic physics: however, with some peculiarities

Sizable part of F 2 even at high Q 2 (~10% at 30 GeV 2 ). High Q 2 means interpretable in terms of pQCD(?) Ratio to total cross section is flat with W (or x). How is this possible? If σ tot ~ gluon density σ diff ~(gluon density) 2 (Naively…)

At high Mx, diffractive DIS is not vanishing at high Q 2.leading twist in pQCD language. Expectation from hadron-hadron data. Energy dependence of diffractive DIS is not like the usual hadronic diffraction.

Proton as a hadron In DIS diffraction we have: A phenomenon that is clearly related to the hadronic nature of the protoni.e. that of confined color. that exists at 10% level at high Q2where perturbative QCD should be usable. that does not conform to the expectation from the hadronic phenomenology. that does not conform to the naïve expectation of 2 gluon exchange. Plenty of mysteries: We observe protons as hadrons clearly in the kinematic region where asymptotic freedom+partons appears to give a good description of data. Do we, then, truly understand the evolution of partons in the protonespecially at low x? Is diffractive DIS the opportunity to finally begin to unravel confinement from a perturbative point of view? A lot of high precision data from HERA exists

Diffractive DIS cross-section Elastic VM production So far, no true understanding of this phenomenon

Combining H1 and ZEUS F 2 results Some understood differences between H1 and ZEUS PDFs ZEUS uses jet-data to constrain mid-x gluon smaller uncertainty H1 uses BCDMS data to pin down the high-x behavior smaller uncertainty Still, there appears to be some systematic differences. H1-ZEUS Working Group: A. Cooper-Sarkar, K. Nagano, J. Ferrando Y. Ri, A. Glazov, M. Klein, V. Shekelian, Z. Zhang, E. Rivzi, U. Martyn H1-prelim ,ZEUS-prel

H1 QCD fitZEUS QCD fit ZEUS data H1 data Fixed target data Global QCD fit CTEQ, MRST etc. Somewhat dissimilar ZEUS, H1 data (also other data sets) have tension, not compatible, must redefine chi2 requirement… etc. Are there problems with one or the other, or both data sets?? Tevatron data

Model uncertainties of the QCD fit NLO pQCD is an approximation. To which kinematic range is it applicable? How low in Q 2, how low in x? If not using higher twist terms, how high in x? How much difference does NNLO terms make? What is the mass of c and b quarks used in the fit? How is the transition from massive to massless quarks handled? Poorly known parameters; e.g. what is the fraction of strange and charm in the sea at the chosen input scale? Parameterizations of parton distributions: modern QCD fit has parameters. We have very little first principle knowledge of the shape of the distributions. Which parameters should be constrained in which way? e.g. is ubar/dbar =1 as x 0? How quickly do parton distributions go to 0 as x 1? Before doing a QCD fit, ask a simpler question

Are the ZEUS and H1 results consistent with having measured the same physical quantity? Is this kind of difference within uncertainties? Correlated systematic uncertainties

χ 2 /dof = 510/599H1 and ZEUS measurements are consistent. Of course, this procedure also produces a combined F 2

The improvement is (much) better than 2 !!!

ZEUS data only H1+ZEUS data Leads to (very) significant improvements in parton densities Note: These plots are taken from the proceedings of HERA-LHC workshop hep-ph/ and uses an earlier version of the combined data. Only HERA I data have been combined so far

HERA ep collider has ceased operations as of July The experiments H1 and ZEUS have together recorded about 1 fb -1 of data. The rise of F 2 at low x and diffractive DIS are two of the most important discoveries at HERA. The quantitative understanding of the latter phenomena is still missing. I certainly did not cover all (or even a large portion) of the new results from ZEUS. Although data taking is over, there is a lot more to come Concluding remarks and outlook

Outlook Full analysis of HERA II datawill probably take 2-3 years more. ~30-50% improvement in statistically limited measurements (high Q 2, E T ), <1% experimental precision in alpha_s. Factor x(2?) improvement in systematics in F 2 (improved understanding and H1+ZEUS combination) Charm and beauty cross-section to 5 and 20% respectivelymicro-vertex detectors. Electroweak measurements. F L measurement for the first time at HERA.

50 Przykład prostego oddziaływania: ep e ρ 0 N' e π + π - N' A to mozliwe diagramy chromodynamiki kwantowej (QCD) dla tej reakcji: Pomeron QCD: 2 gluony czy drabina gluonowa? Na to pytanie usiłujemy odpowiedzieć w Krakowie... |t| (GeV**2).dσ/dt (nb/GeV**2)

51 Wybrane tematy badań w Krakowie: Dyfrakcyjna kwazi-fotoprodukcja mezonów wektorowych ρ, φ and J/Ψ Szczegółowe własności wielo-hadronowych stanów końcowych produkowanych w głęboko-nieelastycznych oddziaływaniach e-p : korelacje między hadronami, fluktuacje krotności hadronów, momenty krotności, interpretacja w ramach perturbacyjnej QCD

52 Korelacje Bosego-Einsteina: rozmiar obszaru emisji hadronów + pomysły w trakcie powstawania (,,odderon, efekty saturacji...)

53 Monitor świetlności świetlność = liczba obserw. przypadków/(przekrój czynny · czas) Zaprojektowaliśmy i zbudowali nowy monitor świetlności dla eksperymentu ZEUS, spełniający wymagania przebudowanego akceleratora HERA, i mierzymy świetlność na bieżąco. Zasada pomiaru świetlności: zliczanie fotonów hamowania epep γ

54 Pierwszy pomiar świetlności : Nasz cel: pomiar świetlności z dokładnością lepszą niż 2% Bethe-Heitler Wielokrotne fotony

55 Proponowane tematy prac magisterskich: Pomiar ekskluzywnego przekroju czynnego na produkcję mezonu J/PSI lub/i PHI w eksperymencie ZEUS przy akceleratorze HERA w DESY w Hamburgu opiekun: dr Dorota Szuba, Analiza materiału doświadczalnego zebranego w eksperymencie ZEUS w 2007 roku Przy energii protonu 460 GeV oraz 575 GeV, kontynuacja prac grupy krakowskiej. Wymagana przyzwoita znajomość angielskiego, możliwa praktyka w DESY. Korelacje w końcowych stanach hadronowych w eksperymencie ZEUS przy akceleratorze HERA w DESY w Hamburgu opiekun: dr hab.. Leszek Zawiejski Analiza materiału doświadczalnego zebranego w eksperymencie ZEUS w okresie HERA II