Sterowanie – metody alokacji biegunów III

Slides:



Advertisements
Podobne prezentacje
Sterowanie – metody alokacji biegunów II
Advertisements

Metody badania stabilności Lapunowa
Obserwowalność System ciągły System dyskretny
Systemy stacjonarne i niestacjonarne (Time-invariant and Time-varing systems) Mówimy, że system jest stacjonarny, jeżeli dowolne przesunięcie czasu  dla.
Metody Sztucznej Inteligencji 2012/2013Zastosowania systemów rozmytych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Zastosowania.
Podstawy Automatyki 2009/2010 Projektowanie układów sterowania Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. 1 Katedra Inżynierii.
Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model.
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Sterowalność i obserwowalność
Kryterium Nyquista Cecha charakterystyczna kryterium Nyquist’a
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły;
Stabilność Stabilność to jedna z najważniejszych właściwości systemów dynamicznych W większości przypadków, stabilność jest warunkiem koniecznym praktycznego.
Teoria sterowania Wykład 3
Automatyka Wykład 4 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów regulacji (c.d.)
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów, elementów i układów.
Podstawowe elementy liniowe
Sterowalność i obserwowalność
Teoria sterowania 2012/2013Sterowanie – użycie obserwatorów pełnych II Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Sterowanie.
Metody Lapunowa badania stabilności
Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność
AUTOMATYKA i ROBOTYKA (wykład 6)
Obserwatory zredukowane
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Modelowanie – Analiza – Synteza
Modelowanie – Analiza – Synteza
Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
Sterowanie – użycie obserwatorów pełnych
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2012/2013Sterowalność - osiągalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność - osiągalność
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Podstawy automatyki 2011/2012Systemy sterowania - struktury –jakość sterowania Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż.
Modele dyskretne obiektów liniowych
Sterowanie – działanie całkujące
Obserwowalność i odtwarzalność
Sterowalność - osiągalność
Sterowanie – metody alokacji biegunów II
Modelowanie – Analiza – Synteza
Algebra Przestrzenie liniowe.
Stabilność Stabilność to jedno z najważniejszych pojęć dynamiki systemów i teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym.
Schematy blokowe i elementy systemów sterujących
Sterowanie – użycie obserwatorów pełnych
Sterowanie – metody alokacji biegunów
Modelowanie i identyfikacja 2013/2014 Identyfikacja rekursywna i nieliniowa I 1 Katedra Inżynierii Systemów Sterowania  Kazimierz Duzinkiewicz, dr hab.
Teoria sterowania 2013/2014Sterowanie – obserwatory zredukowane II  Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Obserwatory.
Modele dyskretne – dyskretna aproksymacja modeli ciągłych lub
Rozwiązywanie układów równań liniowych różnymi metodami
Teoria sterowania SN 2014/2015Sterowalność, obserwowalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność -
Sterowanie ze sprzężeniem od stanu – metoda alokacji biegunów
Systemy dynamiczne 2014/2015Sterowalność - osiągalność  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność i obserwowalność.
Systemy dynamiczne 2014/2015Odpowiedzi – systemy liniowe stacjonarne  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System.
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
Systemy liniowe stacjonarne – modele różniczkowe i różnicowe
Podstawy automatyki I Wykład 1b /2016
O ODPORNOŚCI KONWENCJONALNEGO OBSERWATORA LUENBERGERA ZREDUKOWANEGO RZĘDU Ryszard Gessing Instytut Automatyki Politechnika Śląska.
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Podstawy automatyki I Wykład /2016
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Algebra WYKŁAD 4 ALGEBRA.
Zapis prezentacji:

Sterowanie – metody alokacji biegunów III Przykład 2 System trzeciego rzędu System SISO Wartości własne systemu (bieguny systemu) Złożenie: człon pierwszego rzędu inercyjny, człon drugiego rzędu oscylacyjny Parametry: - człon pierwszego rzędu inercyjny: stała czasowa bezwładności - - człon drugiego rzędu oscylacyjny: pulsacja drgań własnych nietłumionych - współczynnik tłumienia -

System jednowymiarowy – sprawdzenie sterowalności przez sprawdzenie wyznacznika macierzy sterowalności Kalmana Wartość wyznacznika niezerowa – system jest sterowalny (policzyć!) Należy zaprojektować sterownik od stanu, regulacyjny taki, aby otrzymać system zamknięty z wartościami własnymi rzeczywistymi jednakowymi dającymi stałe czasowe bezwładności około 1.5 s. Zatem wartości własne Stąd Zaprojektujemy sterownik korzystając z postaci kanonicznej sterowalności systemu

Skorzystamy z Twierdzenia D1 (poprzedni wykład) Z otrzymanego układu trzech równań liniowych z trzema niewiadomymi obliczymy

Możemy obliczyć macierz przekształcenia podobieństwa Otrzymamy

Stąd lub czyli używając oznaczeń odnoszących się do postaci kanonicznej sterowalności

Możemy obliczyć macierz wzmocnień

Możemy obliczyć wartości własne systemu zamkniętego Niezbyt dokładnie to, co chcieliśmy – zbyt duże błędy zaokrągleń Symulacja systemu zamkniętego Warunki początkowe zerowe, yr – skok jednostkowy

Wyjście Przeregulowania (około 12%) !!! Sterowanie (wejście)

Transmitancja systemu otwartego Zero systemu powodem oscylacji

Pytanie: co dzieje się z zerami systemu podczas przemieszczania biegunów w pożądane położenie za pomocą sprzężenia zwrotnego od stanu? Twierdzenie: Zera systemu (otwartego) nie zmieniają się po dodaniu sprzężenia zwrotnego od stanu. Innymi słowy, zera systemu, który został zamknięty przez macierz wzmocnień L sprzężenia zwrotnego od stanu są zerami pierwotnego systemu

Przykład 3 – system niesterowalny lecz stabilizowalny Wartości własne System jest stabilny Macierz sterowalności Kalmana System jest niesterowalny

Dwie pierwsze kolumny - liniowo niezależne Rząd macierzy sterowalności wynosi 2 Propozycja macierzy przekształcenia podobieństwa potrzebnej do dekompozycji na podprzestrzenie sterowalne i niesterowalne

Przekształcenie podobieństwa Otrzymujemy macierze

Sterowalna część systemu opisana jest macierzami: Niesterowalna część systemu opisana jest macierzami: Macierz sterowalności części sterowalnej Macierz wzmocnień – dwie części

Część sterowalna – rząd drugi  dwie wartości własne (bieguny) mogą być umieszczone w dowolnym położeniu Niech Aby znaleźć macierz wzmocnień zastosujemy wzór Ackermann’a

Trzeci element macierzy wzmocnień nie ma wpływu na położenie wartości własnych systemu zamkniętego i może być wybrany dowolnie, na przykład równy zero

Dokonując retransformacji Niejednoznaczność wyznaczenia macierzy L !!!

Dziękuję za uczestnictwo w wykładzie i uwagę